Background Our group developed a strategy for generating an ‘off-the-shelf’ multivalent proteasome-blocked autophagosome vaccine that contains proteins for many genes commonly over-expressed in adenocarcinoma and squamous cell cancers. This strategy exploits in vitro manipulation of the antigen presentation pathway to concentrate the dominant epitopes presented by MHC, including short-lived proteins (SLiPs), defective ribosomal products (DRiPs), and Dark Matter, the short-lived somatic products (DRiPs), and Dark Matter, the short-lived non-canonical peptides that are not expressed in the thymus and represent potential shared alternative cancer neoantigens. In preclinical models this vaccine strategy provides significant therapeutic efficacy when combined with anti-GITR and anti-PD-1 antibodies via an antigen presenting independent mechanism.

Methods Patients received DPV-001, with sequenced checkpoint inhibition (aPD-1 mAb; retifanlimab), with or without aGITR agonist mAb (INCAGN1876), in recurrent or metastatic HNSCC (NCT04470024). Tumor biopsies were taken pre-treatment, week 2 and 8. Blood samples were taken pre-treatment and at multiple timepoints and analyzed by flow cytometry and seromics. Tumor biopsies and blood were assayed by CITE-seq, scRNA-seq, BCR-seq, and TCR-seq. Multiplex immunofluorescence (mIF) was performed on biopsies.

Results In the first 4 patients evaluated, tumor-infiltrating T cells at week 8 increased from pre-treatment levels by an average of 4.3 fold (range 2.9 – 6.7, p=0.032). The density of CD39/CD103 double positive cells, previously shown to identify tumor-reactive T cells, also increased in all week 8 biopsies (mean 14.7 fold, range 5–40). All patients showed increased numbers of cells expressing IFN-γ and GZMB and increased numbers of T cells expressing LAG3+ in week 8 biopsies. Preliminary TCR evaluation of the tumor identified proliferation of clones previously undetected in PBL, including αβ T cells, iNKT and MAIT cells. Expansion of clones that predated treatment was also identified.

Conclusions An increase in intra-tumoral T cells expressing activation and effector molecules is encouraging and studies are underway to expand the number of patients analyzed. Increased expression of LAG3 by T cells that infiltrate and have expanded in the tumor, provide a rationale for including anti-LAG-3 in this treatment strategy. Future plans include evaluating whether immune responses target shared non-canonical alternative neoantigens, or Dark Matter, contained in DPV-001 and whether antibody responses identify targets of cellular immunity.

References


Ethics Approval PSJH IRB# 2020000480

http://dx.doi.org/10.1136/jitc-2023-SITC2023.0680