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Figure 5 Phenotypical change of tumor- associated antigen (TAA)- specific CD8(+) T cells in response to treatment. (A) Uniform 
Manifold Approximation and Projection (UMAP) plots display the expression intensity of all phenotypic markers on TAA- specific 
CD8(+) T cells analyzed before treatment (Pre), after radiotherapy (RT), and after nivolumab administrations (Nivo) in all patients 
(All), progressors (Prog), and non- progressors (Non- prog). (B) Principal component analysis shows a distinct differentiation 
profile of TAA- specific CD8(+) T cells on Pre, RT, and Nivo in Prog and Non- prog. P represents each patient’s identification 
number in this study and the best overall response for each patient is also shown. (C) Frequency of CD45RO(+)CD27(+)
CD127(+) central memory TAA- specific CD8(+) T cells on Pre, RT, and Nivo in Prog and Non- prog (online supplemental table 
S6). CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.
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irradiation in non- progressors (figure 2A, bottom). Since 
CD160 is a marker associated with the impairment of 
functional CD8(+) T cells and CXCR5 enables T cells to 
migrate to lymph nodes, irradiation may activate CD8(+) 
T cells and accelerate the generation of a functional anti-
tumor immune response.24 25 Although it is necessary to 
prove the correlation between these T- cell markers and 
effector function by a functional assay, irradiation may 
be inducing immunological modulation with antigen 
spreading to some degree.

The stereotactic body radiation therapy for renal cell 
carcinoma reported that intratumoral T- cell clonality was 
modulated by radiotherapy, and that pre- existing T- cell 
clones within the tumor microenvironment expand into 
peripheral blood.26 Moreover, it has been reported that 
increased CD8(+) T- cell effector function and increased 
TCR diversity with extended activation of selective tumor 
infiltrating CD8(+) T cells were associated with antitumor 
effects, and the degree of expansion and contraction 
of peripheral blood T- cell clones has been shown to be 
the strongest predictors of clinical responses to radio-
therapy combined with ICI.26 27 It has also been reported 
that responders to anti- PD- 1 therapy have less clonality 
and more diversity of TCRβ repertoire at treatment base-
line.21 28 In the present study, we evaluated the modula-
tion of TCRβ repertoire in response to the combination 
treatment and found that the TCRβ clonality significantly 
increased and TCRβ diversity significantly decreased 
during this combination therapy in progressors (figure 3, 
B and D). It has been reported that radiotherapy and 
ICIs targeting PD- 1 axis augmented the diversity of the 
TCR repertoire of tumor infiltrating lymphocytes,29–31 
and it was also reported that TCR repertoires of tumor 
infiltrating T cells were different from those in periph-
eral T cells, when responded to treatment.32 33 There-
fore, there is still controversy regarding the relationship 
between TCR repertoires and efficacy of the treatment, 
and the relationship between TCR repertoires in tumor 
infiltrating T cells and those in peripheral T cells.

In association with previous papers describing poten-
tial biomarkers for ICI treatments, the present study indi-
cated that the frequencies of both PD- 1(+)CD8(+) T cells 
and CXCR5(+)CD4(+) T cells on Pre were significantly 
higher in non- progressors (figure 2B) and TMB score 
was significantly lower in non- progressors on RT (online 
supplemental figure S2B).28 34–36 In addition, we also 
found that TAA- specific CD8(+) T cells in non- progressors 
frequently showed a phenotype of CD45RO(+)CD27(+)
CD127(+) central memory T cells compared with those 
in progressors (figure 5C). Furthermore, we recently 
reported that the frequency of peripheral CD45RA(+)
CD27(+)CD127(+) central memory CD4(+) and CD8(+) 
T cells was significantly reduced during the treat-
ment course in non- responders to nivolumab therapy 
for advanced esophageal squamous cell carcinoma.16 
Although further investigation is necessary, the frequency 
of peripheral central memory CD8(+) T cells expressing 
CD27 and CD127 may correlate with a favorable response 

to anti- PD- 1 therapy and/or combinatory treatment of 
irradiation with anti- PD- 1 therapy.

As for the optimization of radiation- induced immuno-
genicity, there is still controversy between non- ablative 
oligo- fractionated irradiation and definitive irradiation 
conditions to enhance the synergistic effect of irradiation 
with ICIs. Of importance, it has been reported that acti-
vation of cyclic guanosine monophosphate–adenosine 
monophosphate synthase (cGAS)- stimulator of interferon 
genes (STING) (cGAS- STING) pathway and its related 
chemokine profile is strongly associated with synergistic 
effect of irradiation with ICI.37 For example, comparison 
of oligo- fractionated irradiation with a single high- dose 
of irradiation showed a completely different profile for 
immune response including cGAS- STING pathway and its 
downstream recruitment of dendritic cells and activation 
of CD8(+) T cells. Moreover, we have recently reported 
that irradiation can induce remodeling of the tumor 
microenvironment through tumor cell- intrinsic expres-
sion of cGAS- STING.38 Therefore, better understanding 
for immunological remodeling of tumor microenviron-
ment induced by irradiation would be necessary, in order 
to further enhance the synergistic effect of irradiation 
with ICI.

There are several limitations in the present study. First, 
the total number of analysis population was small and the 
power of statistical analysis was weak. Second, although 
we have shown that some immune and exhaustion 
markers of peripheral T cells were statistically significant 
between non- progressors and progressors, the differ-
ences were not so marked. Therefore, it would be difficult 
to directly apply these markers for predictive biomarkers 
for the present combinatory treatment. Further analysis 
of peripheral blood T cells using liquid biopsy samples 
obtained from phase III clinical trials would be desirable 
in the future.

Taken together, the present study suggests that oligo- 
fractionated irradiation (22.5 Gy/5 fractions/5 days) 
may induce an immune- modulating effect with antigen 
spreading. Furthermore, we found that TAA- specific 
CD8(+) T cells in non- progressors frequently showed a 
phenotype of CD45RO(+)CD27(+)CD127(+) central 
memory T cells, and TCRβ clonality significantly increased 
and TCRβ diversity significantly decreased during this 
combination therapy in progressors.
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Supplementary Table S1. Antibodies used in the highly multiplexed flow cytometric analysis for 

immune cell subset discrimination and phenotypic profiling. 

Antibody target Fluorochrome Antibody clone Vendor 

TIGIT BUV395 741182 BD Biosciences 

CD25 BUV615 2A3 BD Biosciences 

KLRG1 PerCP-eFluor™ 710 13F12F2 eBioscience™ 

PD-1 BV650 EH12 BD Biosciences 

TIM-3 BV711 7D3 BD Biosciences 

CD160 Alexa Fluor® 647 BY55 BD Biosciences 

CD56 BUV563 NCAM16.2 BD Biosciences 

CD4 BUV661 SK3 BD Biosciences 

CD45RO BUV737 UCHL1 BD Biosciences 

CD27 BUV805 L128 BD Biosciences 

CXCR5 BV480 RF8B2 BD Biosciences 

CD8 BV510 RPA-T8 BioLegend 

CD3 BV570 UCHT1 BioLegend 

CD127 BV605 HIL-7R-M21 BD Biosciences 

HLA-DR APC-R700 G46-6 BD Biosciences 

CD39 APC/Fire 750 A1 BioLegend 
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Supplementary Table S2. A list of 56 epitopes restricted to HLA-A02:01 or HLA-A24:02, which included 46 TAAs and 10 virus antigens. 

HLA-A*02:01 
 

HLA-A*24:02 

No HLA allele Peptide sequence Antigen Ref 
 

No HLA allele Peptide sequence Antigen Ref 

TAA 
 

TAA 

1 HLA-A*02:01 PLFDFSWLSL Bcl-2 208-217 #1 
 

1 HLA-A*24:02 DYLQYVLQI BCL-2A1 #25 

2 HLA-A*02:01 WLSLKTLLSL Bcl-2 214-223 #1 
 

2 HLA-A*24:02 EYRALQLHL Carbonic anhydrase CA9 219-227 #26 

3 HLA-A*02:01 CLPSPSTPV BMI1 271-279 #2 
 

3 HLA-A*24:02 TYACFVSNL Carcinogenic Embryonic Antigen (CEA) 652-660 #27 

4 HLA-A*02:01 TLQDIVYKL BMI1 74-82 #2 
 

4 HLA-A*24:02 IYTWIEDHF FOXM1 262-270 #28 

5 HLA-A*02:01 YLSGANLNL Carcinogenic Embryonic Antigen (CEA) 571-579 #3 
 

5 HLA-A*24:02 EYILSLEEL Glycipan 3 #29 

6 HLA-A*02:01 YLNTVQPTCV EGF-R 1138-1147 #4 
 

6 HLA-A*24:02 TYLPTNASL HER-2/neu 63-71 #30 

7 HLA-A*02:01 TLADFDPRV EphA2 #5 
 

7 HLA-A*24:02 KYYLRVRPLL KIF20A #28, 31 

8 HLA-A*02:01 LIAHNQVRQV HER-2/neu (85–94) #6 
 

8 HLA-A*24:02 VYLRVRPLL KIF20A 67-75 #28, 31 

9 HLA-A*02:01 KIFGSLAFL HER-2/neu 369-377 #7 
 

9 HLA-A*24:02 EYLQLVFGI MAGEA2 156-164 #32 

10 HLA-A*02:01 KLMSSNSTDL HSP105 234-243 #8 
 

10 HLA-A*24:02 IMPKAGLLI MAGE-A3 #33 

11 HLA-A*02:01 GLYDGMEHL MAGEA-10 254-262 #9 
 

11 HLA-A*24:02 TFPDLESEF MAGEA3 97-105 #33 

12 HLA-A*02:01 FLWGPRALV MAGEA3 271-279 #10 
 

12 HLA-A*24:02 EYCPGGNLF MELK 87-95 (93N) #34 

13 HLA-A*02:01 GVYDGREHTV MAGE-A4 230–239 #11 
 

13 HLA-A*24:02 DYLNEWGSRF p-Cadherin #35 

14 HLA-A*02:01 LLFGLALIEV MAGE-C2 191-200 #12 
 

14 HLA-A*24:02 AYACNTSTL Survivin 80-88 #36 

15 HLA-A*02:01 VLPLTVAEV Mesothelin 530–538  #13 
 

15 HLA-A*24:02 VYGFVRACL hTRT 461-469 #37 

16 HLA-A*02:01 SLLFLLFSL MSLN mesothelin #13 
 

16 HLA-A*24:02 SYRNEIAYL TTK protein kinase 551-559 #38 

17 HLA-A*02:01 YLFFYRKSV hTERT 572-580 #14 
 

17 HLA-A*24:02 RYCNLEGPPI ULRC10/LY6K-177 #28 

18 HLA-A*02:01 LLLLTVLTV MUC-1 12-20 #15 
 

18 HLA-A*24:02 SYGVLLWEI VEGFR1-1084 #39 

19 HLA-A*02:01 SLLMWITQV NY-ESO-1 157-165 #16 
 

19 HLA-A*24:02 RFVPDGNRI VEGFR2-169 #39 

20 HLA-A*02:01 SLPPPGTRV p53 149-157  #17 
 

20 HLA-A*24:02 CYTWNQMNL WT1 #40 

21 HLA-A*02:01 VLDGLDVLL PRAME 100-108 #18 
 

21 HLA-A*24:02 EYYELFVNI DEPDC1-294 #28 

22 HLA-A*02:01 LMLGEFLKL Survivin 96-104 #19 
 

22 HLA-A*24:02 KTVNELQNL IMP3-508 #38 

23 HLA-A*02:01 ILAKFLHWL Telomerase 540-548 #20 
 

Virus 

24 HLA-A*02:01 RMFPNAPYL WT-1 126-134 (Wilms tumor) #21 
 

1 HLA-A*24:02 QYDPVAALF pp65/CMV #28 

Virus 
 

2 HLA-A*24:02 VYALPLKML pp65/CMV #41 

1 HLA-A*02:01 NLVPMVATV pp65/CMV #22 
 

3 HLA-A*24:02 AYAQKIFKI IE-1/CMV #42 

2 HLA-A*02:01 VLEETSVML IE-1/CMV #22 
 

4 HLA-A*24:02 TYGPVFMSL LMP2/EBV #43 

3 HLA-A*02:01 CLGGLLTMV LMP-2A/EBV #23 
 

5 HLA-A*24:02 DYCNVLNKEF BRLF1/EBV #44 

4 HLA-A*02:01 GILGFVFTL MP/Influenza #24 
 

6 HLA-A*24:02 TYQWIIRNW PB2/Influenza #45 

HLA, human leukocyte antigen; Ref, reference; TAA, tumor-associated antigen. 
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Supplementary Table S3. Summary of treatments administered prior to the treatment protocol 

of CIRCUIT trial. 

 
1st treatment 2nd treatment 3rd treatment 4th treatment 

P1 SOX RAM + PTX   

P2 SOX RAM + PTX   

P3 DS SP RAM + PTX  

P4 DS XP + HER RAM + nab-PTX  

P5 SP RAM + nab-PTX   

P6 SP SOX RAM + PTX  

P7 SP XP + HER RAM + PTX DS 

P8 SOX RAM + nab-PTX   

P9 SP RAM + PTX   

P10 XP + HER XELOX + HER RAM + PTX RAM + nab-PTX 

P11 XP + HER RAM + nab-PTX   

P12 DCS RAM + nab-PTX   

P13 DCS biweekly CPT-11 weekly PTX  

P14 SOX PTX + RAM   

P15 XP + HER RAM + nab-PTX   

P16 SOX nab-PTX RAM + nab-PTX  

P17 SOX RAM + PTX   

P18 XP + HER SP + HER RAM + PTX  

P19 SP RAM + nab-PTX   

P20 SP RAM + PTX LAK  

Cases with italicized case number were survivors alive as of the data of confirmation of survival. 

CDDP, cisplatin; CPT-11, irinotecan; DTX, docetaxel; HER, trastuzumab; LAK, lymphokine activated killer; 

nab-PTX, nanoparticle albumin-bound paclitaxel; PTX, paclitaxel; RAM, ramucirumab; DCS, docetaxel + 

cisplatin + tegafur/gimeracil/oteracil; DS, docetaxel + tegafur/gimeracil/oteracil; SOX, 

tegafur/gimeracil/oteracil + oxaliplatin; SP, tegafur/gimeracil/oteracil + cisplatin; XELOX, capecitabine + 

oxaliplatin; XP, capecitabine + cisplatin. 
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Supplementary Table S4. The basic stat of the TCR repertoire analysis. 

No. Time-points Number of Tcells (/μl) Read count*  Clones detected** 

P1 

Pre 1,254  176,416  19,036  

RT 753  79,805  9,340  

Nivo 1,341  145,840  11,736  

P2 

Pre 1,537  95,004  5,695  

RT 590  110,225  7,616  

Nivo 486  151,817  10,846  

P3 

Pre 1,662  82,744  14,113  

RT 1,261  155,266  14,712  

Nivo 1,135  135,140  14,865  

P4 

Pre 1,736  128,091  29,428  

RT 1,414  163,078  25,169  

Nivo 740  148,483  20,388  

P5 

Pre 1,527  162,449  18,826  

RT 951  172,581  14,099  

Nivo 933  199,660  17,414  

P6 

Pre 1,655  136,482  13,819  

RT 1,311  198,776  13,315  

Nivo 1,551  90,151  11,556  

P7 

Pre 1,537  190,299  22,150  

RT 2,559  177,283  15,672  

Nivo 1,645  213,904  24,269  

P8 

Pre 802  199,918  16,872  

RT 866  153,061  11,582  

Nivo 715  160,164  12,388  

P9 

Pre 1,820  145,748  11,723  

RT 1,530  187,995  13,579  

Nivo 1,701  124,525  8,903  

P10 

Pre 1,142  170,026  12,313  

RT 688  73,234  5,078  

Nivo 1,018  148,645  9,878  

P11 

Pre 1,798  154,719  19,370  

RT 869  88,178  10,969  

Nivo 1,106  109,059  13,926  

P12 

Pre 938  190,391  17,392  

RT 682  154,430  12,064  

Nivo 555  220,345  15,937  

P13 

Pre 2,901  141,057  27,821  

RT 1,728  115,057  10,061  

Nivo 1,631  88,628  8,327  

P14 

Pre 1,889  121,126  12,969  

RT 963  139,119  11,230  

Nivo 1,003  129,620  15,382  

P15 

Pre 1,686  67,061  17,153  

RT 1,728  133,858  18,429  

Nivo 1,125  146,390  19,982  

P16 

Pre 2,080  193,173  20,107  

RT 1,441  167,697  18,615  

Nivo 1,562  174,364  19,708  

P17 

Pre 1,279  82,554  9,868  

RT 1,138  164,487  15,120  

Nivo 1,192  125,863  14,995  

P18 

Pre 1,114  120,606  20,709  

RT 774  148,523  18,021  

Nivo 892  80,862  18,129  

P19 

Pre 1,027  164,485  21,588  

RT 726  231,327  23,541  

Nivo 1,095  181,699  22,006  

P20 

Pre 1,261  170,012  18,767  

RT 842  99,198  8,051  

Nivo 844  135,481  10,619  

Cases with italicized case number were survivors alive as of the data of confirmation of survival. *Read 

count (assigned reads): Number of reads in which TCR genes were aligned with reference sequences. 

**Clones detected (assigned reads): Number of reads with unique combination. TCR, T cell receptor.  
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Supplementary Table S5. Concentration of ctDNA. 
No. Time-points ctDNA concentration (ng/µl) 

P1 

Pre 24.2 

RT 58.8 

Nivo 51.2 

P2 

Pre 1.38 

RT 0.688 

Nivo 1.31 

P3 

Pre 1.84 

RT 1.82 

Nivo 5.24 

P4 

Pre 2.62 

RT 1.74 

Nivo 3.26 

P5 

Pre 2.2 

RT 2.5 

Nivo 4.18 

P6 

Pre 2.84 

RT 2.84 

Nivo 6.8 

P7 

Pre 10.2 

RT 13.3 

Nivo 25.2 

P8 

Pre 0.968 

RT 0.954 

Nivo 1.16 

P9 

Pre 0.982 

RT 1.52 

Nivo 1.04 

P10 

Pre 8.36 

RT 8.14 

Nivo 10.6 

P11 

Pre 1.47 

RT 1.33 

Nivo 1.68 

P12 

Pre 2.2 

RT 1.41 

Nivo 1.22 

P13 

Pre 1.62 

RT 2.2 

Nivo 6.08 

P14 

Pre 2.36 

RT 1.19 

Nivo 1.3 

P15 

Pre 1.99 

RT 1 

Nivo 0.21 

P16 

Pre 1.17 

RT 2.42 

Nivo 1.45 

P17 

Pre 2.82 

RT 2.06 

Nivo 2.06 

P18 

Pre 0.8 

RT 1.07 

Nivo 1.07 

P19 

Pre 0.916 

RT 0.704 

Nivo 0.566 

P20 

Pre 1.69 

RT 1.73 

Nivo 2.18 

Cases with italicized case number were survivors alive as of  

the data of confirmation of survival. ctDNA, circulating tumor DNA. 
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Supplementary Table S6. Frequency and cell count of TAA- and virus-specific CD8(+) T cells. 
HLA allele HLA-A24:02 HLA-A02:01 

 

Antigen 

TAA [% (cell count)] Virus [% (cell count)] TAA [% (cell count)] Virus [% (cell count)] 

MELK 87-95 p-Cadherin DEPDC1-294 pp65/CMV IE-1/CMV 
hTERT        

572-580 

PRAME       

100-108 
pp65/CMV IE-1/CMV MP/Influenza 

Peptide sequence EYCPGGNLF  DYLNEWGSRF  EYYELFVNI QYDPVAALF AYAQKIFKI YLFFYRKSV VLDGLDVLL NLVPMVATV VLEETSVML GILGFVFTL 

Prog 

P2  Pre               3.74 (244)     

(73) RT             0.0035 (5) 6.44 (9125) 0.0057 (8)   

(PD) Nivo               10.8 (13094)     

P3 Pre       0.031 (43)             

(83) RT       0.039 (27)             

(PD) Nivo       0.056 (54)             

P4 Pre       0.0021 (4) 0.0054 (10)           

(95) RT         0.011 (10)           

(PD) Nivo                     

P6 Pre         0.0036 (19)           

(158) RT 0.0032 (13)       0.0056 (23)           

(PD) Nivo 0.0068 (28)       0.0046 (19)           

P7 Pre       0.28 (450)             

(167) RT       0.42 (447)             

 (PD) Nivo       0.61 (955)             

P8 Pre   0.0033 (4)                 

(174) RT                     

 (PD) Nivo   0.0051 (10)                 

P9 Pre       0.0077 (23) 0.74 (2277)           

(202) RT       0.085 (16) 0.28 (52)           

(PD) Nivo       0.064 (200) 0.68 (2119)           

P10 Pre               1.47 (6476)   0.0043 (19) 

(290) RT               1.29 (2232)   0.0045 (8) 

(PD) Nivo               1.24 (1955)     

Non-prog 

P11 Pre                     

(303) RT                     

(SD) Nivo       0.0035 (12)             

P12 Pre         0.001 (4)           

(330) RT                     

(SD) Nivo                     

P13 Pre         0.0018 (12) 0.002 (13)   0.46 (3025)   0.0027 (18) 

(342) RT       0.0012 (6) 0.0017 (8) 0.00085 (4)   0.25 (1189)   0.0023 (11) 

(SD) Nivo         0.0034 (13) 0.0038 (15)   0.30 (1133)   0.0016 (6) 

P14 Pre 0.0049 (14)                   

(435) RT 0.019 (10)                   

(PR) Nivo 0.009 (17)                   

P15 Pre       0.057 (73) 2.7 (3489)           

(651) RT       0.089 (83) 2.5 (2356)           

(CR) Nivo       0.051 (31) 1.69 (1050)           

P17 Pre               0.073 (156)     

(1111) RT               0.15 (198)     

(SD) Nivo               0.037 (68)     

P18 Pre         0.004 (7)           

(1118) RT     0.0078 (7)               

(CR) Nivo                     

P19 Pre         0.05 (106)           

(1160) RT 0.014 (13)  0.024 (22)      0.12 (111)           

(CR) Nivo 0.015 (7)       0.23 (105)           

P20 Pre 0.0058 (9)       0.011 (17)           

(1489) RT                     

(PR) Nivo         0.0059 (7)           

Cases with italicized case number were survivors alive as of the data of confirmation of survival. Overall 

survival for each patient is shown below the patient’s identification number and best overall response for 

each patient is also shown below overall survival. HLA, human leukocyte antigen; Prog, progressors; Non-

prog, non-progressors; TAA, tumor-associated antigen. 
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