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Abstract

The targeted inactivation of a single oncogene can induce dramatic tumor regression, suggesting that cancers are
“oncogene addicted.” Tumor regression following oncogene inactivation has been thought to be a consequence of
restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and cellular
senescence. However, recent observations illustrate that oncogene addiction is highly dependent upon the host
immune cells. In particular, CD4+ helper T cells were shown to be essential to the mechanism by which MYC or
BCR-ABL inactivation elicits “oncogene withdrawal.” Hence, immune mediators contribute in multiple ways to the
pathogenesis, prevention, and treatment of cancer, including mechanisms of tumor initiation, progression, and
surveillance, but also oncogene inactivation-mediated tumor regression. Data from both the bench and the bedside
illustrates that the inactivation of a driver oncogene can induce activation of the immune system that appears to
be essential for sustained tumor regression.
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Introduction
Capitalizing on oncogene addiction: a therapeutic objective
The inactivation of a single oncogene can result in the
dramatic and sustained regression of some cancers [1-4].
Targeted inactivation of an oncogene can be associated
with proliferative arrest, apoptosis and/or senescence, and
differentiation [3]. Oncogene addiction appears to be a
consequence of the restoration of physiological programs
[2,5], but also has been described as a consequence of syn-
thetic lethality [6] and the differential decay of survival
and apoptosis programs [7]. “Oncogene withdrawal” oc-
curs upon suppression of initiating genetic events in tu-
mors [8,9]. It is not known when a cancer will be addicted
to a particular oncogene [4]. Oncogene addiction has been
thought to occur through host cell autonomous, tumor in-
trinsic mechanisms. Yet, recent observations illustrate that
oncogene addiction has both cell autonomous as well as
immune-mediated mechanisms [10-14] (Figure 1).
Oncogene addiction has been largely studied in mouse

models. However, tumor regression following oncogene
inactivation has been observed in response to targeted
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therapeutics in humans including molecules that target
BCR-ABL or c-Kit, EGFR, ALK, BRAF V600E, PML-
RARα, and HER2/neu for the treatment of leukemia,
lung adenocarcinoma, non-small cell lung cancer, melan-
oma, and breast cancer [15-23]. Other drugs are in clinical
investigation, including those that target JAK2, MDM2,
and PI3 Kinase [24-31]; drugs that target RAS [32] and
MYC [33,34] are in early development. It remains to be
seen if these agents specifically take advantage of onco-
gene addiction. In general, little has been done to study
the mechanism of action of these therapeutic agents in
human patients.
Experimental mouse models have been a particularly

tractable approach to interrogating the mechanism of
oncogene addiction. Transgenic mouse models employing
strategies that enable the conditional expression of onco-
genes have been used to illustrate that cancers initiated by
an oncogene, such as MYC, RAS, BCR-ABL, MET, and
BRAF, are reversible upon suppression of the oncogene
[1,35-40].
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Figure 1 The host immune system is required for sustained tumor regression following oncogene withdrawal. Following oncogene
inactivation in a mouse model by transgenic methods or in patients by oncogene-targeted therapy, there are tumor cell-intrinsic consequences,
immunological consequences, and host microenvironmental consequences. Tumor cell-intrinsic consequences include proliferative arrest and the
induction of apoptosis. Dying tumor cells and antigen debris may stimulate an immune response, which may in turn feed back in to the tumor
cell-intrinsic consequences. The immune response, particularly helper T cells, can influence environmental consequences, including the induction
of senescence and the collapse of angiogenesis. Lastly, senescing tumor cells may have a secretory phenotype, which in turn may influence the immune
system. Taken together, these three components lead to a remodeling of the entire tumor (both in the cancer cells and in the environment) and
contribute to lasting tumor regression and protection from relapse.
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autonomous. However, oncogene inactivation causes dra-
matic changes in the microenvironment including the shut
down of angiogenesis [41-44] and the recruitment of host
effector cells, including innate and adaptive immune cells
[4,45-48]. Thus it appeared likely that the immune system
is playing an active role in the mechanism of tumor re-
gression following oncogene inactivation.
Furthermore, it is well known that the immune system is

a barrier to tumorigenesis [49]. Hosts with absent or sup-
pressed immune systems have a greatly increased incidence
of many different types of cancer [50,51]. Patients who are
transplant recipients and take drugs that suppress their
adaptive immunity demonstrate dramatically increased
incidences of lymphoma and squamous cell carcinoma
[52-54]. Moreover, patients who are immunosuppressed
also have an impeded response to cancer therapy with a de-
creased overall and progression-free survival [55,56]. Thus,
immune surveillance mechanisms are critical both to the
prevention as well the efficacy of conventional treatment of
these cancers [57-59] and are a critical component to the
therapeutic efficacy of agents for cancer [54,60-62].
Correspondingly, the activation of the immune system

through specific immune-based therapies is efficacious for
the treatment of some cancers. This includes antibodies
that target cancer cells, such as Rituximab [63] and Tras-
tuzumab [64], as well as antibodies or drugs that modulate
immunostimulatory or immunoinhibitory signals [65-67],
such as anti-CTLA-4 [68] and anti-PD-L1 [69]. The com-
bination of conventional chemotherapy with targeted im-
mune therapy has emerged as an effective approach for
the treatment of some cancers.

Oncogene inactivation activates the immune system
Recent studies in experimental mouse models illustrate
the mechanisms by which oncogene “withdrawal” results
in immune activation (Figure 1, [24,45]). In a tetracycline-
regulated conditional mouse model of MYC-induced T
cell Acute Lymphoblastic Leukemia (T-ALL), the tumor
cells undergo proliferative arrest and death within 2 days
of turning off the MYC oncogene via tumor intrinsic, host
independent, immune independent mechanisms. Subse-
quently, between 2 and 5 days, there is a recruitment of
immune effector cells that are required to induce cellular
senescence of tumor cells and the shut down of angiogen-
esis in the tumor microenvironment [70]. The kinetics of
tumor regression, the extent of tumor regression, and the
ability to maintain sustained tumor regression are all com-
promised in immunodeficient hosts.
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Provocatively, CD4+ helper T cells were found to be the
key immune effector required for oncogene inactivation-
induced tumor regression in the conditional MYC-driven
T-ALL mouse model. The CD4+ T cells are likely to con-
tribute to tumor regression through many mechanisms.
Of note, CD4+ T cells can express a variety of cytokines
that have been implicated in the regulation of cellular sen-
escence and/or angiogenesis [71-74]. CD4+ T cells may
also be working via direct cellular interactions with the
tumor cells or host stromal cells in the tumor micro-
environment. Finally, CD4+ T cells appear to recruit other
immune and host cells.
The CD4+ helper T cells must express thrombospondins

in order to contribute to tumor regression following onco-
gene inactivation [45]. TSP-1 has been suggested to be a
key regulator of both angiogenesis and senescence [75].
Moreover, CD47, the receptor of TSP-1, is a key regulator
of the immune response [76]. TSP-1 and CD47 have been
suggested to regulate cellular senescence [75,77,78]. How-
ever, there is also a general induction of anti-tumor and a
suppression of pro-tumor cytokines after oncogene inacti-
vation that occurs only in immunocompetent hosts [45].
Hence, specific secreted factors are likely to contribute to
the mechanism of oncogene addiction and withdrawal.
How oncogene inactivation recruits a response of CD4+

T cells is not known. There are several possibilities. First,
oncogenes such as MYC have been suggested to regulate
the expression of molecules that may be immunosup-
pressive and/or regulate angiogenesis. Hence, MYC in-
activation could lead to the direct change in expression of
cytokines by tumor cells, thereby recruiting immune cells
[79]. Second, oncogene inactivation could activate an im-
mune response through immunogenic cell death that in
turns activates the immune response [80]. Identifying the
specific mechanism of the immune activation and response
could suggest important strategies for monitoring and
implementing a therapeutic response [10].
Importantly, many other immune effectors are likely

to contribute to the response of targeted therapies. This
is potentially governed by the unique genetic and cellu-
lar context of each tumor [81,82]. In other mouse
models, investigators have noted that innate immune
cells such as mast cells [83], macrophages [84], and
other antigen-presenting cells (APCs) may function as
barriers to tumor growth and facilitators of tumor re-
gression. Thus, it is likely that these other innate and
adaptive immune cells contribute to the mechanism of
oncogene addiction and tumor regression following
oncogene inactivation.

In the clinic: targeted oncogene inactivation and
immune response
Oncogene addiction has been studied in a more limited
manner in human patients. Some studies indicate that
the host immune response is essential for the optimal
response to conventional chemotherapy and radiotherapy
[85-87]. A major potential limitation of conventional
therapeutics is that they often suppress the immune
response [88].
Other correlative studies suggest that an immune re-

sponse may contribute to the mechanism of targeted onco-
gene inactivation. In human patients with BCR-ABL+

gastrointestinal stromal tumors (GIST) treated with Ima-
tinib, IFN-γ secretion by NK cells in the peripheral blood is
associated with a better clinical response [89]. Similarly, the
inhibition of BRAF both directly inhibits tumor growth but
also appears to activate the immune system [90]. The com-
bination of a BRAF inhibitor, Vemurafenib, with immune
therapy may be more effective in the treatment of tumors
[91]. Moreover, Vemurafenib was associated with intratu-
moral accumulation of adoptively transferred T cells [92] as
well as increased intratumoral numbers of CD4+ or CD8+

T cells [90] and this was associated with a better prognosis
[90]. Other studies have shown that BRAF inhibition is as-
sociated with the reduction of immunosuppressive cyto-
kines and chemokines [93]. Ongoing clinical studies are
examining if Vemurafenib in combination with immuno-
therapy is more clinically effective [94,95].
Other targeted therapies may induce an immune re-

sponse in addition to their tumor-specific effects. Suni-
tinib, which targets PDGFR, RET, and KIT, recruits an
immune response that may contribute to its mechanism
[96] through the induction of IFN-γ-producing T cells
[97] and decreased regulatory T cells [97,98]. Arsenic
and all-trans-retinoic-acid (ATRA), used for the treat-
ment of PML-RARα acute promylecytic leukemia, is
associated with altered antigen presentation [99]. Bor-
tezomib is a proteasome inhibitor used in the treat-
ment of hematopoietic tumors and is associated with
the recruitment to tumor sites of CD8+ T cells and
dendritic cells [100]. The EGFR inhibitor, Erlotinib, is
effective in the treatment of non-small cell lung cancer
and is associated with increased intratumoral numbers
of dendritic cells [101]. Trastuzumab targets HER2/
neu for the treatment of breast and ovarian cancer and
may require an NK cell response [102,103]. Thus, tar-
geted inhibition of oncogenes may be efficacious in
part through the activation of an immune response.
In some cases, targeted inactivation of oncogenes

could inhibit an immune response and impede the effi-
cacy of an anti-tumor therapeutic. For example, inhib-
ition of MAPK/extracellular signal-regulated kinase
kinase (MEK) results in T cell inhibition [104]. Imatinib
can affect the immune response in a multitude of ways
[24,45,105-109]. Thus, it will be pivotal to consider how
targeted oncogene inactivation can induce or suppress
an immune response and how this may contribute to
the mechanism of action of anti-neoplastic agents.
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Therapeutic implications for oncogene-targeted therapies
Experimental evidence and clinical observations suggest
that targeted oncogene inactivation generates an anti-
tumor immune response. More generally this suggests that
targeted oncogene inactivation can be exploited as an im-
mune therapy. Unlike conventional chemotherapy or radio-
therapy, the judicious choice of agents that target specific
oncogenes may lead to tumor regression both by directly
targeting tumor cells and indirectly by inducing a robust
immune response. If this were the case, it would have sev-
eral practical implications for the development and applica-
tion of therapeutics.
First, the combination of oncogene-targeted therapy with

specific immunomodulatory therapy may further increase
the clinical response and long-term survival of patients
[94,110,111]. Pointedly, immune activation may be essential
to prevent the emergence of therapy-resistant tumor cells,
which can lead to tumor recurrence [112,113]. Hence, the
identification of the best agents to prompt oncogene with-
drawal will require examination of the efficacy of these
therapies with consideration of their ability to induce both
cell autonomous and host-dependent mechanisms of tumor
regression.
Several targeted therapies are currently approved or

under investigation in combination with immunomodula-
tory therapies (Table 1). For the treatment of melanoma,
MEK and VEGF inhibitors are being administered with
Ipilimumab [114,115] and IL-2 [116], respectively. BRAF
inhibitors are being examined together with Ipilimumab
[117]. Ipilimumab is also being interrogated in combin-
ation with Brentuximab for the treatment of Hodgkin’s
Lymphoma [118] and with Crizotinib for non-small cell
lung cancer [119]. Ipilimumab and anti-PD-L1 inhibitors
are being analyzed in combination with Erlotinib in non-
small cell lung cancer [119,120].
Table 1 Targeted therapies studied or under investigation in

Target protein(s) Tumor type Targeted

ALK Non-Small Cell Lung Cancer Crizo

BCR-ABL CML, GIST Imatinib,

BRAF Melanoma Vemurafenib

BTK Chronic Lymphocytic Leukemia Ibru

CD20 Follicular Lymphoma Ritux

CD30 Hodgkin’s Lymphoma Brentu

EGFR Non-Small Cell Lung Cancer Erlo

HER2/neu Breast Cancer Trastu

MEK Melanoma Tram

mTOR Renal Cell Cancer Temsi

PDGFR, RET, or KIT Kidney Cancer Sun

Proteosome, NF-kB Multiple Myeloma Borte

VEGF Melanoma Aflib
Targeted therapies together with immune-based therap-
ies are also being examined for the treatment of other
types of cancer. Lenalidomide and Bortezomib are being
examined for treatment of multiple myeloma [121], Lena-
lidomide and Ibrutinib are under investigation for Chronic
Lymphocytic Leukemia [122], and Nivolumab is being
administered with Sunitinib for renal cell cancer [123].
Additionally, the mTOR inhibitor Temsirolimus is be-
ing studied with Interferon-α for renal cancer [124].
Imatinib and Rituximab are being investigated in com-
bination with Nivolumab [125] or Pidilizumab [126].
Trastuzumab is under investigation with peptide vac-
cines and cytokines [127]. These investigations may
identify combinations of targeted and immune-based
therapies that are more efficacious for the treatment of
cancer. Furthermore, the appreciation that immune ac-
tivation may be a critical component to the efficacy of
therapeutics may be important for the measurement
and maximization of their clinical efficacy.

Conclusions
Experimental and clinical observations suggest a model of
oncogene addiction and a role for the immune system
(Figure 1). The inactivation of an oncogene in a tumor ap-
pears to initiate cancer cell-intrinsic programs of tumor
regression including proliferative arrest, differentiation,
and apoptosis, as well as immune-dependent modulation
of the microenvironment that contributes to cellular sen-
escence and the shut down of angiogenesis. These mecha-
nisms are collectively required for complete and sustained
tumor regression.
Oncogene inactivation in a tumor results in activation

of an immune response (Figure 1). The mechanisms by
which this occurs are not defined. These mechanisms
cooperation with immune therapies

therapy Immune therapy Refs

tinib Ipilimumab [119]

Dasatinib Interferon, Nivolumab [125]

, Dabrafenib Ipilimumab [117]

tinib Lenalidomide [122]

amab Pidilizumab [126]

ximab Ipilimumab [118]

tinib Ipilimumab, anti-PDL1 (MPDL3280A) [119,120]

zumab E75 peptide + GM-CSF [127]

etinib Ipilimumab [114,115]

rolimus Interferon-α [124]

itinib Nivolumab [123]

zomib Lenalidomide [121]

ercept IL-2 [116]
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potentially involve both direct mechanisms related to the
production of immune recruiting cytokines as well as
more indirect mechanisms such as immunogenic cell
death. Many cellular and cytokine effectors are likely to be
involved, including CD4+ T cells, CD8+ T cells, B cells,
and innate immune cells such as macrophages and NK
cells (Figure 1). It is possible that the impairment of spe-
cific cellular, humoral, or chemokine mechanisms would
facilitate the re-emergence of tumor cells that are refrac-
tory to targeted therapy.
There are several practical implications of this model.

First, successful targeted therapy against a cancer is likely
to require an intact host immune system. Second, the
measurement of the efficacy of a targeted therapy is likely
to be most readily defined through interrogation of im-
mune activation after drug administration. Third, the early
development of therapeutic agents should be performed
using model systems that have an intact host immune sys-
tem as opposed to in vitro model systems or xenograft
model systems in severely immunocompromised animals.
Our model predicts that the immune system not only

directly eliminates tumor cells but also plays a critical role
in modulating the tumor microenvironment. Diagnostic
assays that detect an immune response may predict the
therapeutic efficacy of oncogene-targeted agents. Strategies
need to be developed that would enable the measurement
of these effector cells and molecules before and after thera-
peutic treatment. This could include in situ measurements
in patients using flow cytometry analysis of immune
effector cells, proteomic and genomic analysis, and nonin-
vasive molecular imaging methods.
Finally, the most effective clinical strategy to treat tu-

mors will likely require a coordination of therapies that
target oncogenes in combination with the activation of
specific immune effectors. Conversely, existing conven-
tional chemotherapies that often impede an immune re-
sponse may antagonize the efficacy of targeted therapeutics.
Hence, mechanistic insight into how oncogene withdrawal
prompts immune activation may actualize rationale thera-
peutic strategies.
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