Activation of Toll-like receptor-2 by tumor associated matrix metalloproteinase-2 modulates dendritic cell function

Emmanuelle Godefroy1, Nina Bhardwaj2*

From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases which degrade extracellular matrix proteins and modulate cell proliferation, migration, differentiation and angiogenesis. MMP-2, a member of the gelatinase subfamily of MMPs, participates in the remodeling and resolution of tissue injury and tumorigenesis. We recently identified an unexpected new role for MMP-2 in the modulation of innate immune function and in the differentiation of inflammatory T112 responses in the tumor microenvironment [1]. Pre-exposure to MMP-2 inhibits IL-12 function and up-regulates OX40L expression by human dendritic cells (DCs). Enzymatically active MMP-2 causes degradation of the IFNAR1 chain of the type-I IFN receptor, reducing the ability of IFN beta to enhance transcription of the IL-12p35 subunit through STAT1 phosphorylation. In the absence of IL-12, OX40L now functions as a key co-stimulatory molecule for the priming of T112 cells. Indeed, we have identified T112 cells within the TIL compartment of melanoma specimens that produce IL-4, TNF and IL-13. However, the T112 mechanism by which MMP-2 up-regulates OX40L is not known and the role of MMP-2-driven T112 cells in vivo has not been determined. In this study, we specifically investigated how MMP-2 up-regulates OX40L on DCs to drive type-2 polarization and the physiologic role of MMP-2 imprinted DC in driving T112 cells. We identified a novel physiological receptor, namely TLR2, for MMP-2 on DCs that, upon activation, up regulates OX40L and induces the production of TNF and IL-6. Significantly, MMP-2 acted as an adjuvant to prime TH2 cells in vivo towards protein antigens. Therefore, extracellular MMP-2 including that derived from tumors has the potential to locally affect DCs leading to modulation of immune responses in malignant diseases.

Authors’ details
1New York Blood Center LFKRI, New York, NY, USA. 2Icahn School of Medicine at Mt Sinai, NY, NY, USA.

Published: 6 November 2014

Reference

doi:10.1186/2051-1426-2-S3-O21

Submit your next manuscript to BioMed Central and take full advantage of:
• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

© 2014 Godefroy and Bhardwaj; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.