Impact of chemotherapy alone, and chemotherapy plus ipilimumab, on circulating immune cells in patients with metastatic bladder cancer

Matthew D Galsky1, Hahn Noah2, Alexander Starodub3, Ralph J Hauke4, Przemyslaw Twardowski5, Mark Fleming6, Jingjing Qi6, Guru Sonpavde7, Manishkumar Patel6, Jun Zhu6, Uma Chippada-Venkata6, Costantine Alban9, Li Wang6, Miriam Merad6, William Oh9, Nina Bhardwaj1, Sacha Gnjatic6, Seunghee Kim-Schulze6*

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015) National Harbor, MD, USA. 4-8 November 2015

Background
Metastatic bladder cancer (MBC) is a relatively chemosensitive neoplasm yet response durations are generally short-lived. Recently, immune checkpoint blockade has demonstrated unparalleled activity in heavily pre-treated patients (pts) with MBC. The role of standard chemotherapy on the immune system of patients with MBC, and optimal approaches to combining chemotherapy and immune checkpoint blockade, has not been comprehensively explored.

Methods
Pts with MBC were enrolled on a Phase II trial of chemotherapy + CTLA4 blockade. Patients received 2 cycles of gemcitabine + cisplatin (GC) followed by 4 cycles of GC + ipilimumab (GCI). Flow cytometry was performed on peripheral blood mononuclear cells at baseline, after GC, and after GCI to determine the impact of treatment on the frequency and phenotype of CD4+ and CD8+ T cells, regulatory T cells (CD4+CD25+CD127-CD45RA-Tregs), and myeloid-derived suppressor cells. Comparisons between time-points were made using Wilcoxon’s rank test. Plasma collected from patients was assayed for the expression of 41 cytokines and chemokines by multiplex assay at these same timepoints.

Results
The trial has completed enrollment (n=36) and flow cytometry data are available for the complete treatment sequence on 27 pts as of 5/2015 (Table). Hierarchical cluster analysis of the cytokine/chemokine panel and cellular immunophenotype demonstrated clustering of post-GC alone specimens and post-GC + ipilimumab specimens. The % of CD4+ and CD8+ T cells was signifi-

Table 1

<table>
<thead>
<tr>
<th>Immune Cell Subset</th>
<th>Baseline</th>
<th>Post GC</th>
<th>Post GC + Ipi</th>
<th>Wilcoxon signed-rank text (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%CD3CD4</td>
<td>8.3 (5.5-13.1)</td>
<td>9.7 (5.1-16.4)</td>
<td>15.8 (9.4-27.0)</td>
<td>0.013</td>
</tr>
<tr>
<td>%CD3CD8</td>
<td>4.4 (2.6-6.7)</td>
<td>4.8 (3.1-7.6)</td>
<td>7.3 (4.2-13.5)</td>
<td>0.9</td>
</tr>
<tr>
<td>% Tregs</td>
<td>6.5 (4.1-7.4)</td>
<td>6.2 (5.2-8.8)</td>
<td>6.2 (4.4-8.0)</td>
<td>0.6</td>
</tr>
<tr>
<td>% Granulocytic MDSC</td>
<td>0.05 (0.001-1)</td>
<td>0.04 (0.01-0.1)</td>
<td>0.04 (0.01-0.08)</td>
<td>0.7</td>
</tr>
<tr>
<td>% Monocytic MDSC</td>
<td>0.01 (0.002-0.03)</td>
<td>0.01 (0.004-0.02)</td>
<td>0.02 (0.007-0.03)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

© 2015 Galsky et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Significantly increased after addition of ipilimumab. The level of cytokines involved in proinflammatory and T cell activation such as IL-12, IL-7, IL-15, IFN-γ, IFNα and IL-1α and IL-1β was higher in the post-GC + ipilimumab than those in post-GC.

Conclusions
Gemcitabine plus cisplatin alone did not demonstrate significant favorable or unfavorable effects on the circulating immunocytes profiled. The addition of ipilimumab induced pharmacodynamic changes including an increase in circulating CD4+ and CD8+ T cells and modulation of the peripheral blood cytokine/chemokine milieu generally suggestive of an immunostimulatory effect. The immunomodulatory effects of treatment, interpreted in the context of the clinical outcome data, may help refine an understanding of the mechanistic basis of anticancer effects and inform subsequent rational combinations of chemotherapy plus immune checkpoint blockade.

Authors’ details
1Icahn School of Medicine at Mount Sinai, New York, NY, USA. 2Mt. Sinai, New York, NY, USA. 3IU Health Goshen Center for Cancer Care, Goshen, IN, USA. 4Nebraska Cancer Center, Omaha, NE, USA. 5City of Hope, Duarte, CA, USA. 6Mount Sinai School of Medicine, New York, NY, USA. 7University of Alabama at Birmingham, Birmingham, AL, USA. 8Indiana University, Indianapolis, IN, USA. 9Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Published: 4 November 2015