Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T cell anergy and promotes survival in tumor-bearing mice

Stefanie Linch1, Melissa J Kasiewicz2*, Michael McNamara2, Ian Hilgart-Martiszus2, Mohammad Farhad2, William Redmond2

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015) National Harbor, MD, USA. 4-8 November 2015

Immunotherapy is gathering momentum as a primary therapy for cancer patients. However, monotherapies have limited efficacy in improving outcomes and only benefit a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to further improve survival. Here, we demonstrate that dual anti-OX40/anti-CTLA-4 immunotherapy generated a potent antigen-specific CD8 T cell response, enhancing expansion, effector function, and memory T cell persistence. Importantly, OX40 and CTLA-4 expression on CD8 T cells was critical to maximally promote their expansion following combination therapy. Animals treated with combination therapy and vaccination using anti-DEC-205-HER2 had significantly improved survival in a mammary carcinoma model. Vaccination with combination therapy uniquely restricted Th2-cytokine production by CD4 cells, relative to combination therapy alone, and enhanced IFNγ production by CD8 and CD4 cells. We observed an increase in MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, and GM-CSF production by CD8 and CD4 T cells following treatment. Furthermore, this therapy was associated with extensive tumor destruction and T cell infiltration into the tumor. Notably, vaccination with combination therapy reversed anergy and enhanced the expansion and function of CD8 T cells recognizing a tumor-associated antigen in a spontaneous model of prostate adenocarcinoma. Collectively, these data demonstrate that the addition of an anti-DEC-205-HER2 vaccine with combined anti-OX40/anti-CTLA-4 immunotherapy augmented anti-tumor CD8 T cell function, while limiting Th2 polarization in CD4 cells and improving overall survival.

Authors’ details

1Earle A. Chiles Research Institute/Providence Health and Services, Portland, OR, USA. 2Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA.

Published: 4 November 2015

doi:10.1186/2051-1426-3-S2-P360

Cite this article as: Linch et al.: Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T cell anergy and promotes survival in tumor-bearing mice. Journal for Immunotherapy of Cancer 2015 3(Suppl 2):P360.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

© 2015 Linch et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

© 2015 Linch et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.