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Abstract

T cell receptor (TCR) gene-engineered T cells have shown promise in the treatment of melanoma and synovial cell
sarcoma, but their application to epithelial cancers has been limited. The identification of novel therapeutic TCRs for
the targeting of these tumors is important for the development of new treatments. Here, we describe the preclinical
characterization of a TCR directed against Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1, encoded by CT83), a cancer
germline antigen with frequent expression in human epithelial malignancies including gastric cancer, breast cancer,
and lung cancer. Gene-engineered T cells expressing the KK-LC-1 TCR (KK-LC-1 TCR-Ts) demonstrated recognition of
CT83+ tumor lines in vitro and mediated regression of established CT83+ xenograft tumors in immunodeficient mouse
models. Cross-reactivity studies based on experimental determination of the recognition motifs for the target epitope
did not demonstrate cross-reactivity against other human proteins. CT83 gene expression studies in 51 non-neural
tissues and 24 neural tissues showed expression restricted exclusively to germ cells. CT83 was however expressed by a
range of epithelial cancers, with the highest expression noted in gastric cancer. Collectively, these findings support the
further investigation and clinical testing of KK-LC-1 TCR-Ts for gastric cancer and possibly other malignancies.
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Introduction
Cellular therapy with antigen receptor gene-engineered
T cells that express chimeric antigen receptors (CARs)
or T cell receptors (TCRs) is a promising approach to
cancer treatment. T cells that express CARs (CAR-Ts)
have demonstrated efficacy in the treatment of leukemia
and lymphoma [1, 2]. T cells that express TCRs (TCR-Ts)
have shown clinical activity in melanoma and synovial cell
sarcoma [3]. However, success with this approach in epi-
thelial cancers has been limited [4].
One constraint has been the identification of tumor-

restricted antigens and of receptors that target these
antigens [5]. Kita-Kyushu Lung Cancer Antigen-1 (KK-
LC-1, encoded by CT83) is a cancer germline (CG) anti-
gen that is reported to have restricted expression in

healthy tissues and frequent expression in certain epithe-
lial cancers including lung cancer, gastric cancer, and
breast cancer [6–8]. Furthermore, it is the only member
of its family, and therefore might be targeted without
risk of intra-family cross-reactivity. Hence, KK-LC-1 ap-
pears to be an attractive target for antigen receptor gene
therapy [4].
Most CG antigen genes map to chromosome X, and

expression is regulated by epigenetic mechanisms that
often result in coordinate gene expression. CT83 is lo-
cated at Xq23, distinct from other CG antigens including
MAGE gene family members and CTAG1A (also known
as NY-ESO-1) [9]. KK-LC-1 was identified as a potential
immunotherapy antigen by characterization of the target
of a lung adenocarcinoma-reactive T cell clone [6].
We identified a KK-LC-1-reactive T cell receptor (KK-

LC-1 TCR) from the tumor-infiltrating lymphocytes (TILs)
of a patient with cervical cancer who had a complete tumor
response to TIL therapy [10]. Here we report the preclinical
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evaluation of the receptor, including targeting of tumor
cells in vitro, regression of xenograft tumors in vivo, cross-
reactivity studies, and assessment of antigen expression by
healthy tissues and tumors. These findings form the basis
for a clinical trial for patients with wide-ranging metastatic
epithelial cancers.

Results
The KK-LC-1 TCR targets KK-LC-152-60 presented by
the HLA-A*01:01 molecule [10]. Predicted binding of
KK-LC-152-60 to other HLA molecules was weaker
(Additional file 1: Table S1) [11]. We tested if third-
party human T cells that were transduced to express
the KK-LC-1 TCR (KK-LC-1 TCR-Ts) recognized
tumor cell lines that express CT83 and HLA-A*01:01 in
vitro. In overnight coculture assays, KK-LC-1 TCR-Ts
from 2 donors displayed interferon (IFN)-γ release in re-
sponse to cell lines that expressed the target antigen and
the HLA restriction element, which indicated recognition
of these lines (Fig. 1a, Additional file 1: Figure S1). These
included the unmanipulated cell lines 4156 (cervical can-
cer), EKVX (lung cancer), and A375 (melanoma). All

tested cell lines that expressed both the target antigen
and the restriction element were recognized; con-
versely, all cell lines that did not express both the tar-
get antigen and the restriction element were not
recognized.
To assess if systemically administered KK-LC-1 TCR-

Ts could mediate tumor responses in vivo, we employed
a murine xenograft model for the treatment of subcuta-
neous, established 4156 or A375 tumors. A single intra-
venous injection of KK-LC-1 TCR-Ts induced
regression of 4156 tumors (Fig. 1b). At the highest dose
(10 × 106 cells) all mice demonstrated complete tumor
regression. A375 tumors, which display heterogenous
CT83 expression (Additional file 1: Figure S2a and b),
eventually recurred, and recurrent tumors showed low
CT83 expression (Additional file 1: Figure S2c), which
may have contributed to their late relapse. Nonetheless,
all mice with either 4156 or A375 tumors treated with at
least 1x10^6 KK-LC-1 TCR-Ts displayed tumor regres-
sion. These data indicate that KK-LC-1 TCR-Ts can tar-
get tumor cells in vitro and can mediate the regression
of tumors in vivo.

Fig. 1 KK-LC-1 TCR-Ts display tumor recognition in vitro and mediate tumor regression in vivo. a Human CD8+ T cells from each of 2 donors
were transduced to express the KK-LC-1 TCR (KK-LC-1 TCR-Ts) or were not transduced (UT-Ts). Tumor recognition was tested in an overnight
coculture assay with the target cell line indicated on the x-axis. The quantity of IFN-γ in the culture supernatants was determined by ELISA.
Expression of CT83 and HLA-A*01:01 by each target cell line is indicated in the key below the x-axis. HLA-A*01:01 transduced cell lines were CT83+
and transduced with a γ-retrovirus to express HLA-A*01:01. “PMA/Iono” indicates T cells that were stimulated with PMA and ionomycin. “T cells
alone” indicates T cells that were cultured without target cells or stimulation. b KK-LC-1 TCR-Ts or control T cells indicated in the figure legend
were administered intravenously to NSG mice bearing established 4156 or A375 subcutaneous tumors (as indicated above each graph). Serial
tumor measurements were plotted at the timepoints indicated on the x-axis. Untreated mice did not receive any therapy. UT-Ts were not
transduced. DMF-5 TCR-Ts target an irrelevant antigen (melanoma associated antigen-1) [12]. N = 10 mice per group. Error bars indicate the
standard error of the mean. This experiment was performed twice with similar results
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We next evaluated KK-LC-1 TCR-Ts for cross-reactivity
against potential epitopes of other human proteins. To de-
termine which residues in the KK-LC-152-60 epitope were
critical for recognition by the KK-LC-1 TCR, we performed
alanine and glycine scanning of the KK-LC-152-60 peptide.
Alanine substitutions at positions 3, 4, 5, 6, and 9 and gly-
cine substitutions at positions 2, 3, 5, 6, 7, and 9 caused a
greater than 75% decrease in IFN-γ release as compared to
the wild type peptide. Based on these data, the residues at
positions 3, 5, 6, and 7 were inferred to be the most essential
non-anchor residues for TCR recognition (Fig. 2a and b).
The ScanProsite online tool was used to search for

human proteins that shared these positions (Additional
file 1: Table S2) [13]. In addition, a Basic Local Align-
ment Search Tool (BLAST) search identified 6 more
human peptides with high levels of sequence identity to
KK-LC-152-60 (Additional file 1: Table S2). KK-LC-1
TCR-Ts were tested for recognition of the 10 candidate
peptides in a coculture assay; recognition was not de-
tected (Fig. 2c). Thus, the KK-LC-1 TCR did not demon-
strate detectable cross-reactivity against human peptides
in vitro.
Targeting of an antigen that is expressed by healthy

tissues with TCR-T therapy can result in severe

Fig. 2 KK-LC-1 TCR-Ts did not demonstrate cross-reactivity with peptides derived from other human proteins. The IFN-γ production assays shown
were performed by coculture of KK-LC-1 TCR-Ts with autologous EBV-LCLs loaded with 1 μg/mL of the peptide indicated. Coculture supernatants
were harvested after overnight coincubation. IFN-γ concentration was determined by ELISA. Error bars represent the SD of 2 technical replicates.
The “no peptide” conditions had target cells without peptide. “PMA/Iono” indicates T cells that were stimulated with PMA and ionomycin. “UT-Ts”
were untransduced control T cells from the same donor as the KK-LC-1 TCR-Ts. a To guide cross-reactivity testing, alanine scanning of KK-LC-
152-60 was performed. An alanine residue was substituted for the native residue at each position of KK-LC-152-60. b To compliment alanine
substitution and assess the influence of position 7 on target recognition, glycine scanning also was performed. c Peptides derived from human
proteins that demonstrated identity at the contact residues inferred by the experiments in (a) and (b) or by a BLAST search for candidate
peptides that shared at least 5/9 residues (55% identity) were tested for KK-LC-1 TCR-T recognition
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autoimmune toxicity [5]. To determine if CT83 is
expressed by healthy tissues, we performed quantitative
reverse transcription polymerase chain reaction (qRT-
PCR) on a custom array of cDNA from healthy tissues.
Because other members of the CG antigen family have
been found to be expressed at low levels in the brain we
included a range of neural tissues in the screening panel
[14]. CT83 expression was detected in positive control
samples of epididymis and testis, which lack HLA ex-
pression and thus, cannot be targeted by T cells. CT83
was not detected in other tissues except at a very low
level (< 2500 copies) in urinary bladder (Fig. 3a). To fur-
ther interrogate healthy tissues for expression of CT83,
we queried the BioGPS database (Barcode on normal
tissues dataset) (Fig. 3b) [15]. Expression of CT83 did
not exceed a z-score of 5, the value that suggests expres-
sion in a given tissue, except in sperm and testis.
CTAG1A, the gene that encodes Cancer/testis antigen 1,
an antigen that has been targeted with TCR-Ts without
reactivity against healthy tissues, displayed a similar pat-
tern of expression. Taken together, these data suggest
that CT83 expression by healthy tissues is restricted to
germ cells.
KK-LC-1 expression has been reported in gastric can-

cer, triple negative breast cancer, and lung adenocarcin-
oma [6–8]. To investigate whether KK-LC-1 is expressed
in other cancer types, we tested 57 cell lines from 10 dif-
ferent types of cancer for CT83 expression by qRT-PCR.
Lung, breast, cervical, ovarian, melanoma, prostate, and
leukemia cancer cell lines were found to express CT83,
albeit with varying levels and frequencies of expression
(Fig. 4a). Bioinformatic analysis of The Cancer Genome
Atlas (TCGA) Provisional data set accessed on the cBio-
Portal Cancer Genomics public database also indicated
CT83 expression in a wide range of cancers, with more
frequent expression (> 20% of tumors) in testicular can-
cer, lung adenocarcinoma, pancreatic cancer, lung squa-
mous cell carcinoma, cervical cancer, bladder cancer,
head and neck cancer, and breast cancer (Fig. 4b). We
previously observed CT83 expression in a human papil-
lomavirus (HPV) +metastatic cervical cancer. Examin-
ation of a bank of metastatic cervical cancer specimens
revealed expression in 6/21 (29%) of cervical squamous
cell carcinomas and 5/8 (63%) of cervical adenocarcin-
omas (Fig. 4c). In other HPV+ cancers, expression was
detected in 1/8 anal cancers, 0/5 head and neck cancers,
and 0/2 vaginal cancers (Fig. 4c). To assess the fre-
quency of cells within a tumor that express CT83, we
performed RNA in situ hybridization with RNAScope on
gastric cancers, breast cancers, and lung cancers. The
highest frequency of positive cells occurred in gastric
cancers, of the 13 samples tested, 9 were positive for
CT83 expression (median: 50%, range: 5 to 90%). Triple
negative breast cancer also had varying frequencies of

expression, with 4/9 samples positive for CT83 (Fig. 4d
and e). Non-small cell lung cancer and pancreatic cancer
were also assessed but expressed the antigen less fre-
quently and demonstrated a lower fraction of positive
cells (range: 0 to 5%). These data suggest that gastric
cancer may be a favorable disease in which to target KK-
LC-1 and that other cancers may be appropriate but in
fewer patients.

Discussion
Here, we describe the characterization of a TCR for the
targeting of cancers that express the cancer germline anti-
gen KK-LC-1. T cells engineered to express this TCR dis-
played specific recognition of KK-LC-1+ tumor lines in
vitro and mediated regression of KK-LC-1+ tumors in
vivo. KK-LC-1 TCR-Ts did not demonstrate cross-reactiv-
ity against human proteins that share contact residue mo-
tifs with the intended target. The gene encoding KK-LC-1,
CT83, was not expressed by healthy human tissues other
than germ cells. It was expressed, however, by diverse
types of epithelial cancers at variable frequencies and with
heterogenous intratumoral expression levels. Expression
was highest in gastric cancer, where by RNA in situ
hybridization (ISH) 9/13 samples were positive, and 5 dis-
played expression in at least 50% of tumor cells.
Autoimmune toxicity from unintended cross-reactivity

of TCR-Ts against healthy tissues has prevented the de-
velopment of otherwise promising TCR-T therapies
[16–18]. KK-LC-1 TCR-Ts did not display cross-re-
activity against human protein epitopes that shared rec-
ognition motifs or substantial sequence identity. The
cross-reactivity testing based on alanine and glycine
scanning to identify TCR contact residues may not
identify all potential cross-reactive peptides; a full scan
of all amino acid substitutions at each position may be
more sensitive [19]. Despite this, the likelihood of KK-
LC-1 TCR cross-reactivity against human proteins is
relatively low as it was subjected to human thymic se-
lection, and the complementarity-determining regions
were not altered. Severe autoimmune TCR-T-mediated
toxicity has also resulted from the targeting of anti-
gens that are expressed by healthy tissues [12, 20].
CT83 does not appear to be expressed by vital human
tissues, as it was not detected in a panel of 51 non-
neural (except germ cells) and 24 neural tissues by
qRT-PCR. It is important to note that due to differ-
ences in mouse and human major histocompatibility
complex molecules, safety cannot be assessed by the
animal models in this study. In addition, data that
xenograft models, such as those employed in this
work, can predict treatment efficacy in humans is
lacking. Thus, a phase I clinical trial with careful dose
escalation will be required.
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KK-LC-1 appears to be an attractive target antigen for
TCR-T therapy as it is frequently expressed by a range
of epithelial cancers, and it is not expressed by vital
healthy tissues. ISH revealed varying intratumoral

heterogeneity of expression, which has been observed
with other CG antigen targets and may be an import-
ant consideration in the selection of types of cancer
and specific patients to treat with this approach.

Fig. 4 CT83 expression by cancer cell lines and tumors. a The frequency (% of tumors that express the antigen) of CT83 expression by different
cancer types was assessed. Expression data are derived from TCGA Provisional dataset accessed through cBioportal. Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) values > 0 were considered positive. The number of samples per cancer type is indicated in
parentheses. b A panel of cancer cell lines was assessed for CT83 expression by qRT-PCR. The y-axis displays CT83 copies per 105 copies of ACTB.
This experiment was performed twice with similar results. c The frequency of HPV+ metastatic cancers that express CT83 was assessed by qRT-
PCR. The number of samples per cancer type is indicated in parentheses. Experiments were performed twice. d Intratumoral heterogeneity of
CT83 expression was assessed by RNA ISH using RNAScope. The tumor type is indicated on the x-axis. The frequency of CT83+ tumor cells was
scored by an independent, blinded pathologist. e Sample images of CT83+ tumors by RNAScope are shown. Magnification is 20X. Nuclei were
counterstained with DAPI (blue)
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Gastric cancers commonly demonstrated CT83 ex-
pression, and a high fraction of cell expressed the
antigen in some tumors (5/9 tumors examined
showed at least 50% positivity). Taken together, these
data support the continued study of KK-LC-1 TCR-
Ts for the treatment of gastric cancer and possibly
other epithelial malignancies.

Materials and methods
Animal care and in vivo experiments
Animal research protocols were approved by the NIH
Animal Use and Care Committee. NSG mice (The Jackson
Laboratory) were housed in NIH facilities. Tumors were
established by subcutaneous injection of 1 × 107 4156 cells
or 4 × 106 A375 cells. Seven days after tumor cell injection,
mice were treated with a single dose of cells administered
by tail vein injection. Tumor size was measured with cali-
pers and is reported as tumor area (mm2).

Cell lines
Tumor cell lines were obtained from ATCC and the
NCI’s Division of Cancer Treatment and Diagnosis
Tumor Repository, except 4156, 4050, and 3748 which
were generated in our laboratory. Tumor cell lines were
grown in culture media based on RPMI 1640, IMDM, or
DMEM (Thermo Fisher Scientific) with 10% fetal bovine
serum (HyClone). Cell line identity was confirmed by
morphology, HPV E6 and E7 expression, and CT83 ex-
pression. HLA class I typing was determined by the NIH
Clinical Center HLA Laboratory or by review of publicly
available records. All cell lines were checked regularly
for mycoplasma. 293-A*01:01 cell lines were generated
by transduction of 293 cells with a bicistronic retrovirus
encoding HLA-A*01:01 and truncated CD34. Trans-
duced cells were selected by cell separation based on
CD34 (Miltenyi Biotec).

Quantitative reverse transcription polymerase chain
reaction
To assess expression of CT83, RNA was extracted from
the cancer cell lines and HPV+ metastatic cancers using
RNeasy Plus Micro Kit (Qiagen). RNA concentration
and purity was assessed by NanoDrop spectrophotom-
eter (Thermo Fisher Scientific). 1 μg of RNA was then
used to generate cDNA using qScript cDNA Supermix
(Quanta Bio). Expression of the genes of interest was
determined by qRT-PCR with Taqman primer/probe
sets (Thermo Fisher Scientific) specific for the CT83
gene (Hs02386421_g1,), CTAG1A/B gene (Hs00265824_
m1), and the housekeeping ACTB gene (Hs99999903_
m1) using the Quantstudio 3 RT-PCR system (Applied
Biosystems) according to manufacturer’s standard in-
structions. Serially diluted DNA plasmids of CT83 and
ACTB were used to generate standard curves for copy

number quantification using standard procedures. The
thermal cycling conditions used were as follows: 95 °C 7
min; 95 °C 15 s, 60 °C 30 s × 40 cycles; 4 °C. A detailed
protocol for qRT-PCR can be found in the Additional
file 1.

Retroviral transduction of T cells
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from healthy human volunteers and transduced
with a retroviral vector encoding the KK-LC-1 TCR as
previously described [10]. Briefly, the 293GP packaging
cell line was transfected with the plasmid of interest
(pMSGV1-TCR) and the pRD114 envelope plasmid
using Lipofectamine 2000 (Life Technologies). Retroviral
supernatant was harvested 48 h later and used to trans-
duce PBMCs that had been stimulated with soluble
50 ng/mL anti-CD3 (OKT3, Miltenyi Biotec) and 300
IU/mL rhIL-2 (Prometheus) for 2 days prior to retroviral
transduction. Transduction efficiency was determined by
flow cytometric analysis using the anti-mouse TCRβ-chain
antibody. Detailed protocols for retroviral supernatant pro-
duction and for retroviral transduction of T cells can be
found in the Additional file 1.

Flow cytometry
Fluorescently-conjugated antibodies were purchased from
BD Biosciences (anti-human CD4-FITC, clone SK3; anti-
human CD8-PE-Cy7, clone SK1), Biolegend (anti-human
CD3-BV421, clone SK7), and eBioscience (anti-human
CD34-APC, clone 4H11; anti-mouse TCRβ-chain-PE,
clone H57–597). Flow cytometry was conducted with a
Novocyte (Acea Biosciences) and analyzed using FlowJo
software (TreeStar Inc). In all analyses, doublets and
dead cells were gated out using propidium iodide
(Sigma Aldrich) and forward and side scatter. CD3+
cells were gated on before examining the population of
interest. This gating strategy is depicted in Additional
file 1: Figure S3.

Immunological assays
Antigen recognition assays were performed by overnight
coincubation of effector cells with target cells. Readout
for these co-cultures was the production of IFN-γ as
determined by enzyme-linked immunosorbent assay
(ELISA) (R&D Systems). For tumor recognition test-
ing, 6 × 104 KK-LC-1 TCR-Ts or an equal number of
control cells were cocultured with 1 × 105 tumor cells.
For cross-reactivity testing, 8 × 104 KK-LC-1 TCR-Ts
or an equal number of control cells were cocultured
with 8 × 104 Epstein Barr Virus-transformed lympho-
blastoid cell lines (EBV-LCLs) pulsed with 1 μg of
peptide. Peptides were synthesized by GenScript. As a
positive control, T cells were stimulated with 50 ng/mL
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phorbol 12-myristate 13-acetate (PMA; Sigma) and
500 ng/mL ionomycin (Sigma).

In silico search
The ScanProsite tool was used to perform searches for
human peptides that contain the potential KK-LC-152-60
TCR recognition motifs identified by alanine and glycine
scanning. Searches were performed with motifs that in-
cluded matches at positions 3, 5, 6, and 7 (X-X-D-X-N-
L-A-X-X).
NCI protein BLAST was used to identify additional

non-KK-LC-1 peptides within the human genome with a
high level of sequence identity to KK-LC-152-60. Peptides
greater than 9 residues or less than 8 residues were ex-
cluded. All candidate peptides that shared at least 5/9 resi-
dues (55% identity) were tested for recognition in vitro.
The BLAST and ScanProsite search parameters were
adjusted as previously described [16].

Chromogenic in situ hybridization (CISH)
CT83 detection by CISH was performed with the 2.5 LS
Reagent Kit - Red (RNAscope) using the Bond RX
System (Leica Biosystems) to hybridize CT83-specific
probes (RNAscope 2.5 LS Probe- Hs-CT83-O1) (ACD)
to the target mRNA. Homo sapiens peptidylprolyl isom-
erase B (cyclophilin B) (PPIB) was used as a positive con-
trol, and a bacterial gene (dihydrodipicolinate reductase
(dapB)) was used as negative control. Human non-small
cell lung cancer (including adenocarcinoma, squamous cell
carcinoma, and large cell), and triple negative breast cancer
samples provided by the Cooperative Human Tissue Net-
work which is funded by the National Cancer Institute
(NCI). Other investigators may have received specimens
from the same subjects. Human gastric adenocarcinoma
samples were obtained from the Surgical Oncology Pro-
gram of the NCI. ISH staining and imaging were performed
by the Molecular Pathology Lab of the Frederick National
Laboratory for Cancer Research. Slides were digitized using
Aperio ScanScope FL Scanner (Leica Biosystems). CT83 ex-
pression was manually quantified by a anatomic pathologist
(LMR) based on the presence of punctate nuclear and cyto-
plasmic signals within tumor cells.

Analysis of predicting binding KK-LC-152-60 to MHC-I
molecules
The MHCI binding predictions were made using the
IEDB analysis resource Consensus tool [11], which com-
bines predictions from ANN aka NetMHC (4.0) [21–23],
SMM [24] and Comblib [25]. The following parameters
were used: Prediction Method- IEDB recommended 2.19;
MHC sources species- human; HLA Class I allele refer-
ence set [26].

Analysis of gene expression data from bioinformatic
repositories
The public database BioGPS was used to analyze antigen
expression in normal tissue. The Barcode on Normal
Tissues dataset (U133plus2 Affymetrix microarray) was
selected and CT83 (probeset: 1559258_a_at) and CTAG1A
(probeset: 211674_x_at) expression data were extracted.
For CTAG1A, multiple probesets were available and one
was selected based on the lowest levels of background.
The database cBioportal was accessed to analyze CT83
expression in cancer. All expression data were derived
from TCGA Provisional dataset.

Statistical analysis
Statistical tests were performed using GraphPad Prism 7
Software.

Additional file

Additional file 1: Supplemental Methods. Table S1. Predicted binding
of KK-LC-152-60 to MHC-I molecules. Table S2. Peptides identified by an
in silico search and tested for cross-reactivity. Figure S1. Determination
of HLA-A*01:01 expression in transduced cell lines by flow cytometry.
Figure S2. CT83 expression levels differed in the cell lines used for in
vivo experiments. Figure S3. Sample gating strategy for flow cytometry.
(DOCX 15400 kb)
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