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Abstract

Background: Immunotherapy, especially immune checkpoint inhibition, has provided powerful tools against cancer.
We aimed to detect the expression of common immune checkpoints and evaluate their prognostic values in
nasopharyngeal carcinoma (NPC).

Methods: The expression of 9 immune checkpoints consistent with 13 features was detected in the training
cohort (n = 208) by immunohistochemistry and quantified by computational pathology. Then, the LASSO cox
regression model was used to construct an immune checkpoint-based signature (ICS), which was validated in
a validation cohort containing 125 patients.

Results: High positive expression of PD-L1 and B7-H4 was observed in tumour cells (TCs), whereas PD-L1, B7-
H3, B7-H4, IDO-1, VISTA, ICOS and OX40 were highly expressed in tumour-associated immune cells (TAICs).
Eight of the 13 immune features were associated with patient overall survival, and an ICS classifier consisting
of 5 features (B7-H3TAIC, IDO-1TAIC, VISTATAIC, ICOSTAIC, and LAG3TAIC) was established. Patients with high-
risk scores in the training cohort had shorter overall (P < 0.001), disease-free (P = 0.002), and distant metastasis-
free survival (P = 0.004), which were confirmed in the validation cohort. Multivariate analysis revealed that the
ICS classifier was an independent prognostic factor. A combination of the ICS classifier and TNM stage had
better prognostic value than the TNM stage alone. In addition, the ICS classifier was significantly associated
with survivals in patients with high EBV-DNA load.

Conclusions: We determined the expression status of nine immune checkpoints consistent with 13 features
in NPC and further constructed an ICS prognostic model, which might add prognostic value to the TNM
staging system.
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Background
Nasopharyngeal carcinoma (NPC) is prevalent in south-
ern China, Southeast Asia, North Africa, the Middle East
and Alaska [1]. With the advent of intensity-modulated
radiotherapy and combined chemoradiotherapy, the local
control rate has been significantly improved, and distant
metastasis has become the main cause of death in NPC,
making it urgent to seek novel effective treatment methods
[2]. NPC is characterized by prevailing Epstein-Barr virus
(EBV) infection and a heavy infiltration of immune cells
around tumour lesions [3, 4]. Recent studies showed that
increased TILs (tumor-infiltrating lymphocytes) and CD3+
T cells (total T cells) was associated with improved survival
for NPC patients [4, 5]. However, cancer cell could still
keep growing in the patients with high infiltration of lym-
phocytes, which suggested the existence of immunosup-
pressive microenvironment in NPC patients [6, 7]. Due to
the efficacy of improving immunosuppressive microenvir-
onment, immunotherapy was suggested to be a promising
therapeutic method for NPC patients.
Accumulating studies report that the immunosuppres-

sive tumour microenvironment makes immune cells
exhausted and anergic, eventually enabling cancer cells to
evade host immune-mediated elimination [6]. Immune
checkpoints expressed on tumour or inflammatory cells
play vital roles in inhibiting or enhancing the anti-tumour
immune response, and blocking inhibitory immune check-
points has become an attractive anti-tumour strategy [8,
9]. Actually, several important single-arm trials evaluating
monoclonal antibodies against programmed cell death
protein 1 (PD-1) in recurrent or metastatic nasopharyn-
geal carcinoma have been reported, where PD-1 inhibitors
is effective in only 20~30% of NPC patients [10, 11].
Those indicated that the tumour microenvironment is
intricate and other immune checkpoints, such as B7-H3,
LAG3, and VISTA, might exist. However, the expression
levels of most immune checkpoints in NPC are still un-
known, and there is a need to systematically evaluate the
expression statuses of all immune checkpoints in NPC.
In this study, based on computational pathology analysis,

we simultaneously detected the expression status of nine
immune checkpoints consistent with 13 features and evalu-
ated the comprehensive immunosuppressive status of the
NPC microenvironment. We then explored the prognostic
values of these immune checkpoint features and developed
an immune checkpoint-based signature (ICS) to predict
the clinical outcomes of NPC patients, which could divide
patients into different risk subgroups and might add prog-
nostic value to the TNM staging system.

Methods
Clinical specimens
We retrospectively collected 333 paraffin-embedded
NPC specimens for this study. A total of 208 specimens

obtained at the Sun Yat-sen University Cancer Center
(Guangzhou, China) between January 2011 and Decem-
ber 2013 were designated as the training cohort, while
125 samples obtained at the Affiliated Hospital of Guilin
Medical University (Guilin, China) between January
2010 and June 2014 were designated as the validation
cohort. All patients from the Guangzhou cohort under-
went intensity-modulated radiation therapy (IMRT), and
all patients from the Guilin cohort underwent two-
dimensional radiotherapy (2D-RT). No patients had
received any antitumour therapy before biopsy sampling,
and all of the patients were pathologically diagnosed
with NPC. All patients were restaged according to the
8th AJCC TNM staging system [12]. This study was
approved by the Institutional Ethical Review Boards of
both hospitals, and written informed consent was ob-
tained from each patient. This study is reported accord-
ing to the REMARK criteria [13].

Immunohistochemistry (IHC)
Based on previous studies [14–17], we selected 9 prognos-
tic immune checkpoints for IHC staining: PD-L1, B7-H3,
B7-H4, IDO-1, LAG-3, VISTA, TIM-3, ICOS and OX40.
IHC was performed as previously described [18]. The
following primary antibodies were used: anti-PD-L1 (clone
E1L3N, 1:400 dilution; Cell Signaling Technology, CST,
Beverly, Massachusetts), anti-B7-H3 (clone D9M2L, 1:400;
CST), anti-B7-H4 (clone HPA054200, 1:800; Sigma-
Aldrich, Ronkonkoma, NY, USA), anti-IDO-1 (clone
D5J4E; 1:800; CST), anti-LAG3 (clone D2G40, 1:100;
CST), anti-VISTA (clone D1L2G, 1:800; CST), anti-TIM3
(clone D5D5R, 1:400; CST), anti-ICOS (clone D1K2T, 1:
1600; CST), and anti-OX40 (ab119904, 1:1600; Abcam,
Cambridge, UK).

Computational pathology analysis
A full view of each IHC slide was digitally scanned using a
ScanScope Aperio AT2 slide scanner (Leica Microsys-
tems) at 400× magnification. All images were auto-
examined using computational pathology analysis, and the
expression was quantified as the percentage of tumour
cells (TCs) or tumour-associated immune cells (TAICs)
expressing the immune checkpoints. As the immune
checkpoints PD-L1, B7-H3, B7-H4, and IDO-1 are
expressed by both TCs and TAICs, these checkpoints
were assessed in both compartments. In contrast, given
their predominant expression in TAICs, LAG3, VISTA,
TIM3, ICOS, and OX40 were assessed only in the tumour
stroma compartment (Additional file 1: Figure S1). In
total, there are 13 features.
In brief, the computational pathology analysis consisted

of five stages: 1) manual annotation of the individual cell
nuclei into TCsand TAICs by two pathologists; 2) stain
deconvolution of the IHC staining from the haematoxylin
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counterstaining; 3) automated segmentation of the nuclei
in the haematoxylin channel; 4) automated classification
of the cells into TCs, TAICs and other cells using the
Xception deep learning model [19]; and 5) quantification
of the positive cell percentage for each immune check-
point (Fig. 1a). Detailed descriptions of the computational
pathology analysis are provided in the supplementary
materials. Computational pathology analysis showed a
high consistency with pathological classification, with an
accuracy rate of 83.6% for TC identification and 87.9% for
TAIC identification (Fig. 1b).

Construction of the ICS
We adopted a penalized Cox regression model to select
the most useful prognostic features out of all 13 immune
checkpoint features [20] and then constructed an ICS for
predicting survival in the training cohort. The “glmnet”
package was used to perform a least absolute shrinkage
and selection operator (LASSO) Cox regression model

analysis. Ten-time cross validations with the Lambda.min
criteria were used to determine the optimal values of λ,
and a value of λ = 0.038 with log (λ) = − 3.269 was chosen.
Based on this value, IDO1TAIC, VISTA TAIC, B7-H3 TAIC,
ICOS TAIC and LAG3 TAIC were selected to construct the
prediction model with the coefficients weighted by the pe-
nalized Cox model in the training cohort. We then used
X-tile software (version 3.6.1; Yale University, New Haven,
CT, USA) to generate the optimal cutoff values for the
ICS scores based on the associations with patient overall
survival (OS) [21]. The thresholds for the scores that were
produced by the predictive model were used to separate
patients into low-risk and high-risk groups.

DNA extraction and real-time QuantitativePolymerase
chain reaction
The plasmatic EBV DNA concentrations were routinely
measured before treatment using quantitative polymer-
ase chain reaction, as described in the Additional file 1

Fig. 1 Computational pathology analysis. a Histology image analysis pipeline and validation; (b) Precision, recall and F1-score for each of the
three cell classes. The scale bar represents 30 μm
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[22]. A cut-off level of 2000 copies/mL was chosen to de-
fine low and high pretreatment EBV DNA levels [23, 24].

Statistical analyses
Our primary endpoint was OS, and secondary endpoints
included disease-free survival (DFS) and distant
metastasis-free survival (DMFS). We calculated OS from
the first day of treatment to the date of death from any
cause, DFS from the first day of treatment to the date of
the first relapse at any site or death from any cause
(whichever occurred first) and DMFS from the first day
of treatment to the first distant relapse.
The associations between the ICS and clinicopatholog-

ical variables were calculated using the χ2 test or Fisher’s
exact test. Receiver operating characteristic (ROC) curve
analysis was used to determine optimal cutoff values
separating high and low expression for the 13 immune
checkpoint features in the training cohort with respect
to OS. The Kaplan-Meier method was used to estimate
OS, DFS and DMFS, the log-rank test was used to com-
pare differences, and hazard ratios (HRs) were calculated
using univariate Cox regression analysis. Multivariate
Cox regression analysis with backward selection was
used to test the independent significance of different
factors. Significant variables (P ≤ 0.1) were included in
the multivariate analysis, and only independent prognos-
tic factors were retained in the multivariate model. In
addition, we established a prognostic score model com-
bining the ICS and TNM stage [25, 26]. ROC curves
were used to compare its prognostic validity with the
TNM stage or ICS alone models. We also did subgroup
analysis according to the pre-treatment plasma EBV-
DNA levels.
All statistical tests were two-sided and considered sig-

nificant when the p value was less than 0.05. Statistical
analyses were performed using Statistical Package for
the Social Sciences (SPSS) v22.0 (IBM, Armonk, NY,
USA) and R software (R version 3.2.3; rms package,
“rpart” package version 4.1–10, http://www.r-project.
org/; “glmnet” package). The authenticity of this article
has been validated by uploading the key raw data onto
the Research Data Deposit public platform (http://www.
researchdata.org.cn), with the approval RDD number as
RDDB2019000556.

Results
Patient characteristics and immune checkpoint expression
We collected 333 pretreatment, non-metastatic NPC speci-
mens that were obtained at two academic institutions for
this study. Additional file 2: Table S1 shows the clinico-
pathological characteristics of the patients in the training
cohort (n = 208) or validation cohort (n = 125). All patients
received radiotherapy, and 307 (92.2%) patients received
platinum-based chemotherapy. The median follow-up time

was 69.7months (interquartile range (IQR) 65.1–72.8) for
the patients in the training cohort and 58months (IQR
41–69) for those in the validation cohort.
Representative images of immunohistochemical stain-

ing for the 9 immune checkpoints consistent with 13
features tested are shown in Additional file 1: Figure S1.
Based on computational pathology analysis, the expres-
sion of the immune checkpoints was digitally measured
and quantified as the positive expression percentages of
TCs and TAICs. Using four cutoff values (> 1, > 5, > 25,
and > 50%), which have been frequently used in reports
on the expression of PD-L1, we determined the distribu-
tion of NPC patients expressing the immune checkpoints
in the training cohort. In addition, the median percentages
of all immune checkpoints were also determined. With a
median percentage greater than 10%, high positive expres-
sion of PD-L1 and B7-H4 was observed in TCs, whereas
all immune checkpoints except for LAG3 and TIM3 were
highly expressed in TAICs (Table 1). In addition, we
analysed the co-expression status of four immune check-
points in TCs and found that PD-L1, B7-H4, and IDO-1
expression was the most common combination of simul-
taneously expressed markers, as this pattern was seen in
16% of the NPC specimens (Additional file 2: Table S2).

Prognostic value of immune checkpoint expression
Furthermore, we explored the prognostic value of the 13
immune checkpoint features in the training cohort. As
shown in Fig. 2, eight of the features were significantly

Table 1 Expression levels of 13 features regarding 9 immune
checkpoint markers in nasopharyngeal carcinoma

No. of NPC Patients (%) with Expression Above the Cutoff Value

Marker Median > 1% > 5% > 25% > 50%

TAIC expression

PD-L1 12.97 201 (97) 151 (73) 59 (28) 16 (8)

B7-H3 26.13 196 (94) 175 (84) 105 (50) 50 (24)

B7-H4 22.06 205 (99) 195 (94) 90 (43) 21 (10)

IDO-1 20.75 206 (99) 187 (90) 83 (40) 14 (7)

LAG3 5.55 197 (95) 109 (52) 15 (7) 5 (2)

VISTA 12.46 205 (99) 169 (81) 30 (14) 3 (1)

TIM3 2.75 183 (88) 62 (30) 0 (0) 0 (0)

ICOS 26.21 207 (100) 204 (98) 111 (53) 9 (4)

OX40 19.95 208 (100) 192 (92) 80 (38) 24 (12)

TC expression

PD-L1 10.44 191 (92) 136 (65) 49 (24) 22 (11)

B7-H3 7.01 165 (79) 115 (55) 50 (24) 19 (9)

B7-H4 13.41 200 (96) 162 (78) 57 (27) 13 (6)

IDO-1 7.66 195 (94) 131 (63) 23 (11) 6 (3)

Abbreviations: TC tumour cell, TAIC tumour-associated immune cell
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associated with patient survival. The patients with high
expression of PD-L1 in either their TCs (HR 0.38, 95%
confidence interval (CI) 0.20–0.74, P = 0.004) or TAICs
(HR 0.47, 95% CI 0.25–0.90, P = 0.023) had better OS
than the patients with low expression of PD-L1. Similar
results were observed for IDO-1 expression in both the
TCs (HR 0.45, 95% CI 0.24–0.85, P = 0.014) and TAICs
(HR 0.43, 95% CI 0.23–0.81, P = 0.01). In addition, high
expression of LAG3 (HR 0.34, 95% CI 0.16–0.74, P =
0.006), VISTA (HR 0.38, 95% CI 0.19–0.73, P = 0.004),
or ICOS (HR 0.41, 95% CI 0.22–0.77, P = 0.006) in the
TAICs was associated with better OS than low expression,
while high expression of B7-H3 in the TAICs (HR 2.13,
95% CI 1.12–4.03, P = 0.021) was associated with poorer
OS than low expression (Fig. 2). The associations between
the 13 immune checkpoint features and DFS or DMFS are
listed in Additional file 1: Figure S2 and Figure S3.

ICS construction and its association with prognosis
To construct an immune checkpoint-based prognostic
model, we identified 5 immune checkpoint features that
were significantly associated with OS in the training co-
hort using penalized LASSO Cox regression models
(Additional file 1: Figure S4). Then, a risk score was cal-
culated for each patient using a formula that included 5
features weighted by their regression coefficient: Risk
score = (0.6995× positive percentage of B7-H3TAIC) -
(0.0054× positive percentage of IDO-1TAIC) - (0.4039×
positive percentage of VISTATAIC) - (1.6908× positive
percentage of ICOSTAIC) - (0.0710× positive percentage
of LAG3TAIC).
After using X-tile plots to generate the optimal cutoff

value (− 0.16) for the risk score (Additional file 1: Figure
S5), we assigned 159 patients in the training cohort into
the low-risk group and 49 patients into the high-risk
group. The high-risk group had a shorter 5-year OS rate
than the low-risk group (61.2% vs. 88.1%, respectively,
HR 3.75, 95% CI 1.98–7.09, P < 0.001). The patients with
high-risk scores also had shorter DFS (HR 2.51, 95% CI
1.40–4.50, P = 0.002) and DMFS (HR 2.93, 95% CI 1.41–
6.09, P = 0.004) than the patients with low-risk scores
(Fig. 3a-c).

Validation of the prognostic value of the ICS
To validate whether the ICS has similar prognostic value
in different populations, we tested the 5 immune check-
point features in a validation cohort of 125 NPC patients
and then used the formula and cutoff point developed
from the training cohort to stratify the patients into low-
risk (n = 70) and high-risk (n = 55) groups. The patients
with high-risk scores had shorter OS (56.4% vs. 81.4%,
respectively, HR 2.58, 95% CI 1.31–5.07, P = 0.006), DFS
(HR 2.39, 95% CI 1.32–4.30, P = 0.004) and DMFS (HR
2.55, 95% CI 1.13–5.73, P = 0.024; Fig. 3d-f) than those

with low-risk scores. The 5-year OS, DFS, and DMFS
rates in each ICS group and the number of patients who
had an event in each risk group are listed in Additional
file 2: Table S3 and Table S4, respectively.
We performed univariate analyses with the training and

validation cohorts, and Additional file 2: Table S5, Table
S6 and Table S7 shows the associations among the ICS,
clinicopathological characteristics and patient clinical out-
comes. The ICS was significantly associated with OS, DFS,
and DMFS in the two cohorts. Multivariate Cox regres-
sion analysis showed that the ICS remained a powerful
and independent prognostic factor for OS, DFS, and
DMFS in the training cohort (OS: HR 3.62, 95% CI 1.91–
6.87, P < 0.001; DFS: HR 2.43, 95% CI 1.35–4.35, P =
0.003; and DMFS: HR 2.77, 95% CI 1.33–5.77, P = 0.007)
as well as in the validation cohort (OS: HR 2.59, 95% CI
1.32–5.10, P = 0.006; DFS: HR 2.38, 95% CI 1.32–4.30, P =
0.004; and DMFS: HR 2.55, 95% CI 1.13–5.72, P = 0.024).
In addition, the TNM stage and EBV-DNA levels were
also significantly associated with OS, DFS and DMFS in
the multivariate analysis (Additional file 2: Table S8).

Prognostic score model combined the ICS and TNM stage
TNM stage is the determinant for predicting prognosis
and guiding treatment currently, but its accuracy is lim-
ited as it based on anatomical information and it need to
be supplement with molecular indicators.
To develop a more sensitive model to predict progno-

sis of NPC patients, we established a prognostic score
model combining the ICS and TNM stage based on the
multivariate Cox regression analysis. The regression coef-
ficient of the ICS was divided by the regression coefficient
of the TNM stage, and then rounded into an integer value
to generate the risk score (Additional file 2: Table S9). We
calculated each patient a cumulative risk score, and used
ROC analysis to compare the sensitivity and specificity of
the prognostic score model with the TNM stage or ICS
alone model. Combination of the ICS and TNM stage
showed significantly better prognostic value than the
TNM stage alone for OS (area under ROC (AUROC) 0.73
[95% CI 0.64–0.82] vs 0.63 [0.55–0.72]; P = 0.003), DFS
(0.68 [95% CI 0.59–0.77] vs 0.62 [0.54–0.70]; P = 0.039),
and DMFS (0.69 [95% CI 0.58–0.80] vs 0.62 [0.52–0.71];
P = 0.049) in the training cohort, which were confirmed in
the validation cohort (OS, 0.72 [95% CI 0.62–0.82] vs 0.62
[0.52–0.72]; P = 0.012; DFS, 0.72 [95% CI 0.62–0.81] vs
0.62 [0.52–0.72]; P = 0.016; DMFS, 0.69 [95% CI 0.58–
0.81] vs 0.60 [0.49–0.71]; P = 0.035) (Fig. 4).

Association between the ICS and EBV-DNA levels
NPC is closely associated with EBV infection, which has
been reported to be involved in the regulation of immune-
inhibitory biomolecules [27]. We analysed whether the
EBV-DNA burden could affect the predictive efficacy of
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Fig. 2 Kaplan-Meier curves for overall survival according to the 13 immune checkpoint features. Plots show (a) PD-L1TC; (b) PD-L1TAIC; (c) B7-H3TC;
(d) B7-H3TAIC; (e) B7-H4TC; (f) B7-H4TAIC; (g) IDO-1TC; (h) IDO-1TAIC; (i) LAG3TAIC; (j) VISTATAIC; (k) TIM-3TAIC; (l) ICOSTAIC and (m) OX40TAIC in the
training cohort. Abbreviations: TC, tumour cell; TAIC, tumour-associated immune cell; HR, hazard ratio; and CI, confidence interval
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the ICS in 208 NPC patients from the Guangzhou training
cohort. After the patients were divided into different sub-
groups by their pretreatment plasma EBV-DNA level,
Kaplan-Meier curves showed that stratification by the ICS
resulted in significant differences in OS (HR 4.82, 95% CI
2.22–10.47, P < 0.001), DFS (HR 3.07, 95% CI 1.52–6.19,
P = 0.002), and DMFS (HR 4.66, 95% CI 1.92–11.29, P =
0.001) in the patients with an EBV-DNA level > 2000
copy/mL (Fig. 5a-c). However, in the patients with an
EBV-DNA level ≤ 2000 copy/mL, we did not find a signifi-
cant association between the ICS and any of the outcomes
(Fig. 5d-f). The 5-year OS, DFS, and DMFS rates in each
risk group and the number of patients who had an event
in each risk group among the different EBV-DNA burden
groups are listed in Additional file 2: Table S3 and
Table S4.

Discussion
In this study, we determined the expression of 13 im-
munologic variables derived from 9 immune checkpoints
and evaluated their prognostic value in NPC patients.
Furthermore, we developed and validated a novel prog-
nostic model (ICS) based on the expression of 5 immune
checkpoint features, which could improve the ability to
predict the clinical outcome of NPC patients when com-
bined with the TNM stage, especially that of patients with

a high pre-treatment EBV-DNA burden. In addition,
based on anatomical information, TNM staging is an
important factor in predicting prognosis. Conversely,
the ICS signature could provide the immune micro-
environment status of nasopharyngeal carcinoma and
may add prognostic value to the TNM staging system.
We developed a prognostic score model combining ICS
and TNM stage had better prognostic value than did
TNM stage alone in the training cohort and the valid-
ation cohort. The prognostic score model allows for a
more accurate classification of NPC patients at different
risks. To our knowledge, this is the first study to simul-
taneously measure 13 different immunologic variables
derived from 9 immune checkpoints in the tumour
microenvironment using digital computational analysis
and to construct an immune-related prognostic model
for NPC.
Immune escape is a hallmark of tumour progression

[6]. Important studies have found that immune-inhibitory
and immune-activating molecules expressed on TCs or
TAICs are involved in the regulation of tumour immune
escape [14]. These molecules have been found to be ab-
normally expressed in a variety of cancers and associated
with patient prognosis [15, 28]. Furthermore, some of
these immune checkpoints have been shown to be prom-
ising treatment targets [14, 28]. However, the expression

Fig. 3 Kaplan-Meier curves for overall, disease-free and distant metastasis-free survival according to the ICS. Plots show (a) overall survival, (b)
disease-free survival and (c) distant metastasis-free survival in the training cohort and (d) overall survival, (e) disease-free survival and (f) distant
metastasis-free survival in the validation cohort. Abbreviations: ICS, immune checkpoint-based signature; HR, hazard ratio; and CI, confidence interval
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of these immune checkpoints in the tumour-immune
microenvironment of NPC is still unclear. In this study,
the expression of 9 immune modulators (out of a total of
13 immune features) by TCs or TAICs was automatically
quantified, and a 5-immune feature-based classifier was
established to predict the survival of NPC patients, and
these predictions were validated in an external cohort.
Importantly, our results demonstrated that ICS was an
independent prognostic factor in patients receiving either
IMRT (SYSUCC cohort) or 2D-RT (Guilin cohort).
Therefore, ICS is a promising prognostic classifier, which
could be widely used to predict the prognosis of NPC
patients regardless of RT techniques used. In addition, a
prognostic score model combined the ICS classifier and
TNM stage was constructed and had a better prognostic
value than the TNM stage alone, which could guide a
more personalized therapy. Our study of the expression of
multiple immune checkpoints can help to understand the
immune state of tumours in individuals and potentially
improve therapeutic approaches for patients with different
immunosuppressive mechanisms.

Computational pathology analysis has been established
for several decades [29]. In recent years, it has gained
great attention due to the capabilities of whole-slide
scanning and accurate large-scale analysis without subject-
ive bias. In addition, emerging biomarker-based patient
stratification calls for the accurate quantitative evaluation of
molecular properties [30]. Since the structural microscopic
morphology of NPC is diverse and complex, report vari-
ation exists between different pathologists in identifying the
percentages of immune checkpoint-expressing cells among
TCs and TAICs. Thus, it is necessary to deeply explore the
immune checkpoint properties of NPC using computa-
tional pathology analysis. Especially for patients receiving
immunotherapy, computational pathology analysis makes
immune checkpoint expression evaluation scalable to a
large number of image features contained in whole-slide
pathology images, and it will hopefully identify new effect-
ive biomarkers that can select appropriate patients for
immunotherapy. In this study, we quantified 13 immune
features derived from 9 immune checkpoints through com-
putational pathology analysis. Our computational pathology

Fig. 4 Comparisons of the sensitivity and specificity for the prediction of overall, disease-free and distant metastasis-free survival by the combined
ICS and TNM stage model, the TNM stage alone model, and the ICS alone model. Receiver operating characteristics (ROC) curves of (a) overall
survival, (b) disease-free survival and (c) distant metastasis-free survival in the training cohort and (d) overall survival, (e) disease-free survival and
(f) distant metastasis-free survival in the validation cohort. P values show the area under the ROC (AUROC) of the combined ICS and TNM stage
model versus AUROCs of the TNM stage alone model or the ICS alone model
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analysis, which was developed based on the Xception
model, achieved good performance in identifying TC and
TAIC nuclei. Moreover, this analysis can obtain a large
amount of quantitative information with high speed, which
provides an effective prognostic tool for NPC patients.
EBV plays an important role in the pathogenesis of

NPC, and the pre-treatment plasma EBV-DNA load
correlates with cancer stage and clinical outcome in
endemic NPC [3, 23]. Here, we performed a subgroup
analysis to explore whether the EBV-DNA load affects
the prognostic value of our ICS prognostic model. Our
data suggested that the OS, DFS, and DMFS of patients
with an EBV-DNA level > 2000 copy/mL were largely
governed by the state of the ICS, whereas those of the
patients with an EBV-DNA level ≤ 2000 copy/mL were
not. Accumulating studies report that EBV DNA might
be released by cancer cells during apoptosis, which could
reflect the tumor burden of patients [31, 32]. In addition,
immunosuppressive microenvironment could facilitate
tumor progression [6]. Therefore, we presumed that the
existence of immunosuppressive microenvironment in
NPC patients might lead to high tumor burden, which
released more EBV DNA in the plasma. Moreover, the
patients with high-risk scores had shorter DMFS than
those with low-risk scores, and there was no significant

association between the ICS and LRRFS both in the
training and validation cohorts. We speculated that the
high-risk score of ICS mainly lead to distant metastasis,
and the locoregional control of NPC were regulated by
other mechanisms. In this regard, EBV DNA load is
positively correlated to the risk of distant metastatization
[23]. Consistently, we observed that patients experienced
unfavourable DMFS in groups with high EBV DNA load.
Actually, our study has limitation due to the objective

reasons. As radiotherapy or combined with chemother-
apy is now the standard treatment for locoregionally
nasopharyngeal carcinoma, surgery is not recommended
[33]. Therefore, the whole tumor could not be obtained
from NPC patients. In this study, we evaluated the expres-
sion of each immune checkpoint on single biopsy of NPC
patients, which might represent local immunity pattern.
In our present study, we systemically evaluated the

immunosuppressive status of the NPC tumour-immune
microenvironment. We determined the expression sta-
tuses and prognostic values of nine immune checkpoints
consistent with 13 features in NPC and further con-
structed an ICS prognostic model based on 5 immune
checkpoint features and combined with the TNM stage,
which allows for a more accurate classification of patients
at different risks.

Fig. 5 Kaplan-Meier curves for overall, disease-free and distant metastasis-free survival of patients grouped by their EBV-DNA level and then
stratified according to the ICS. Plots show (a) overall survival, (b) disease-free survival and (c) distant metastasis-free survival in the EBV-DNA
level > 2000 copy/mL subgroup and (d) overall survival, (e) disease-free survival and (f) distant metastasis-free survival in the EBV-DNA level≤ 2000
copy/mL subgroup. Abbreviations: ICS, immune checkpoint signature; HR, hazard ratio; and CI, confidence interval
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Conclusions
We developed and validated an immune checkpoint-based
signature consisting of 5 immune checkpoint features to
predict clinical outcomes in nasopharyngeal carcinoma
(NPC), which allows for a more accurate classification of
patients at different risks and might add prognostic value
to the TNM staging system.
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