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To study the interaction between tumor and immune
cells, we have to consider also their interaction within
the same microenvironment. Xia and colleagues [31] de-
velop humanized mice model with human hematopoietic
system and autologous leukemia in the same individual
mouse. This model is developed by transducing CD34+

fetal liver cells with retroviral vector containing
mixed-lineage leukemia MLL-AF9 fusion gene, which al-
lows recapitulation of human leukemic diseases [31, 32].
Although it would be interesting to develop a similar hu-
manized mouse model in which healthy human
hematopoietic cells and primary leukemic blasts pres-
ence in the same individual mouse, the availability of
healthy human CD34+ progenitor cells from the very
same leukemia patient is a limiting factor. Hence, we de-
velop two separate mice models and thereby avoiding
limiting criteria of HLA-matching between healthy
CD34+ progenitor cells and primary AML donors.
In order to test the efficacy of TEG001, we utilized a

mouse xenograft model, which has been widely used to
study therapeutic responses in heterogeneous diseases such
as cancer. PD-X models, considered to closely mimic hu-
man diseases, are established by engrafting primary patient
material into immunodeficient mice [33]. Assessment of
AML burden in mouse xenograft models is commonly per-
formed by measuring the percentage of human leukemic
cells in bone marrow at the end of study period. In this
study, we developed a stringent treatment model where we
infused TEG001 upon the onset of the disease (represented
by an arbitrary threshold of 500 AML cells/ml detected in
peripheral blood). Moreover, we developed an elegant
method that allowed us to follow the disease progression
for a longer period as well as the treatment effect to reduce
tumor burden over time by measuring AML cells in per-
ipheral blood. Nonetheless, we acknowledged some limita-
tions in our method, such as variable engraftment rates
commonly observed in PD-X model [34] and a low level of
AML engraftment in peripheral blood of adult NSG mice
as reported previously [35]. In spite of these limitations, we
were able to detect a significant reduction of AML cells in
peripheral blood of TEG001-treated mice in comparison to

the mock-treated group. Furthermore, we developed a sep-
arate PD-X model using NSG-SGM3 mice using the same
primary AML blast from donor p25 to assess the influence
of microenvironment towards TEG001 efficacy profile.
NSG-SGM3 mice express human cytokines, including IL-3,
GM-SCF, and SCF, and thereby supporting primary AML
engraftment and their survival in vivo [25]. Here we dem-
onstrate that TEG001-treated group showed significantly
lower AML burden in comparison to mock-treated group,
despite the lack of tumor clearance. This could be due to
the more protective microenvironment poses by
NSG-SGM3 mice, which could hamper T cell access to tar-
get cells and therefore limit the ability of TEG001 to clear
primary AML burden over time. Based on the overall data
and thus as proof-of-principle we have demonstrated the
efficacy profile of TEG001 against primary human AML in
two independent models.
In order to assess the toxicity of TEG001 against the

hematopoietic compartment in the very same model we
engrafted NSG mice with CD34+ progenitor cells derived
from healthy human cord blood donors. Reconstitution of
hematopoietic cellular compartments when assessed in the
peripheral blood occurred at different stages, in which
CD14+ monocytes and CD19+ B cells significantly in-
creased two weeks after progenitor cell injection, whereas
CD3+ T cells reconstituted relatively slower, however no
differences could be observed between TEG001 and
mock-treated mice. Furthermore, we investigated whether
TEG001 does affect hematopoietic compartments in differ-
ent tissues, specifically spleen and bone marrow, at which
progenitor cells should reside [36, 37]. While we could find
all equivalent cell subsets with comparable reconstitution
for both treatment groups also in spleen and bone marrow,
there were differences in the prevalence for CD14+ mono-
cytes and CD19+ B cells in different tissues, however again
with no difference between TEG001 and mock treated
mice. Monocytes were found in higher numbers in the per-
ipheral blood when compared to bone marrow and spleen,
whereas B cells were prevalently observed in the periphery
and spleen. This observation is in line with previous studies
showing that the reconstitution of human hematopoietic

(See figure on previous page.)
Fig. 6 Cytopathology analysis of bone marrow and histopathology analysis of mouse vital organs (spleen, liver, intestine). (a) Representative
picture of May-Grünwald Giemsa staining for bone marrow cytospin from both treatment groups (TEG001 and TEG-LM1 mock) with pleomorphic
population of cells with all maturation stages including numerous blasts (B), promyelocytes (Pr), dysplastic immature cells (DiC), megakaryocytes
(Mk) and a mixed population of myeloid and erythroid (E) lineages; (b) Representative pictures for H&E staining of mouse spleen for both
treatment group (TEG001 and TEG-LM1 mock) with non-neoplastic, lympho/histiocytic hyperplastic lesion with mitotic figure (arrows), apoptotic
bodies (arrowhead) and erythroid precursors (*). Magnification: 40X; (c) Representative pictures for H&E staining of mouse liver for both treatment
group (TEG001 and TEG-LM1 mock) with small focus of extramedullary hematopoiesis (arrows) in all samples, which could be due to the mouse
model with engraftment of human CD34+ progenitor cells. Magnification: 20X; (d) Representative pictures for H&E staining of mouse intestine for
TEG001-treated group (left) showing multifocal lymphocytic infiltration of lymphoid cells (arrows) in a small tract of the small intestine
(background lesion) and TEG-LM1 mock-treated group (right) with normal jejunum. Magnification: 10X. Shown are representative pictures from an
individual mouse of both TEG001 and TEG-LM1 mock group (n = 3 mice/group) with no significant differences in overall cytopathology and
histology features between treatment groups
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stem cells in host mice is commences predominantly with
erythroid and myeloid cells, followed by lymphoid progeni-
tor and lastly mature lymphocytes [38]. Also, neither in-
duction of cellular stress by irradiation nor exposure to
inflammatory cytokines (i.e., IL-2 and IFNγ), or the pres-
ence of chemotherapy agent Cy/Flu alter RhoB transloca-
tion towards the cell membrane for healthy CD34+

progenitor cells, and thus no alteration of TEG001 recogni-
tion pattern. In addition, our data confirm that different
tissue compartments are comprised of different types of
immune cells; and show that TEG001 treatment did not
influence this pattern. Thus TEG001 most likely does not
affect homing of hematological subsets nor mediate
hematopoietic toxicity, as suggested by our previous work
demonstrating that the mode of action is mainly observed
in tumor cells and not in the healthy hematopoietic com-
partment [12, 19]. The only physiological target of
γ9δ2TCRs are professional antigen presenting cells (APC)
like monocytes and dendritic cells in the presence of PAM
[18], as also demonstrated in this study in the in vitro ex-
periments. However, as reported previously, this recogni-
tion apparently fosters the maturation of APC and
potentially broadens an adaptive immune response
through epitope spreading [39] rather than promoting
elimination of APC. In line with this assumption, we could
still detect CD14+ monocytes reconstitution in vivo after
transfer of TEG001.

Conclusion
In conclusion, our data suggest antitumor reactivity of
TEG001 against primary AML blasts in vivo. While we
concur that the absence of evidence is not equal to the
evidence of absence and within the limitation of our
current models where off-target activities cannot be ex-
cluded entirely, there are no data indicating an increased
safety risk specific for TEG001. A GMP-compliant pro-
duction of TEG001 has now been established [17, 40], and
will be used in an ongoing phase I open-label dose escal-
ation study to explore toxicity and activity of TEG001 in
patients with primary refractory or relapsed acute myeloid
leukemia, as well as patients with multiple myeloma.
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Additional file 1: Supplementary Materials and methods including cell
lines, primary materials, retroviral transduction and depletion of non-
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Additional file 3: Figure S2. Gating strategy for flow cytometry analysis
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peripheral blood. Tumor load was measured by quantifying absolute cell
number of viable huCD45+CD13+CD33+ of the primary AML blast and
representative plot for TEG001 and TEG-LM1 mock group. (PPTX 178 kb)

Additional file 4: Figure S1. γδTCR expression of TEG001 and TEG-LM1
mock. A representative flow cytometry plot γδTCR expression of TEG001
and TEG-LM1 mock after transductions, after αβTCR depletion and prior
to infusion into mice after 2 weeks expansion. (PPTX 191 kb)

Additional file 5: Figure S3. In vivo efficacy profile of TEG001 in PD-X
model of primary blast in NSG-SGM3 mice. (A) Schematic overview of in
vivo experiment. NSG-SGM3 mice were irradiated at day 0 and engrafted
with primary AML cells at day 1. AML cells were followed-up in the per-
ipheral blood by flow cytometry. Mice received 2 injections of therapeutic
TEG001 or TEG-LM1 mock in the presence of PAM (at Day 8 and 16) and
IL-2 (at Day 8); (B) Tumor burden for primary AML was measured in per-
ipheral blood by quantifying for absolute cell number by flow cytometry.
Data represent mean ± SD of all mice per group (n = 5 mice/group). Stat-
istical significances were calculated by non-parametric 2-tailed Mann-
Whitney t-test; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****,
P < 0.0001. (PPTX 101 kb)

Additional file 6: Figure S4. Gating strategy for flow cytometry
analysis of healthy hematopoietic compartments. A representative
flow cytometry plot of murine peripheral blood. (A) Engraftment was
determined by quantifying absolute cell number of viable huCD45+

of healthy stem cells; (B) Hematopoietic cellular compartments
outgrowth were determined by quantifying absolute cell number for
CD19+ B cells, CD3+ T cells, and CD14+ monocytes. Also, persistence
of TEGs were determined by quantifying absolute cell number for
γδTCR+ cells. (PPTX 225 kb)
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