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Figure 4  Multiplex immunofluorescence (IF) using tyramide 
signal amplification (TSA)-based detection methods and 
multispectral imaging. Representative non-small cell lung 
carcinoma stained with six markers (cytokeratin (CK), 
programmed death-ligand 1 (PD-L1), programmed cell death 
protein-1 (PD-1), CD68, CD8, FOXP3). The image acquisition 
of all markers occurs simultaneously. Individual markers (or 
select combinations of markers) can then be displayed.

are to be imaged simultaneously, a multispectral imaging 
system that can conduct linear unmixing of signals is 
often required to separate the signals.5 Such systems 
can also have the advantage of subtracting both spectral 
overlap and tissue autofluorescence; however, they also 
require the preparation of a spectral library or the use of a 
synthetic library, as per manufacturer’s recommendation.

Assay optimization and validation
mIF panel development is essentially the consolidation 
of multiple singleplex IF protocols into a single protocol 
that shows an equivalent staining pattern relative to the 
optimized singleplex IF and IHC staining.5 Switching 
from the singleplex to multiplex format can lead to an 
increase or decrease of individual marker signals, poten-
tially requiring additional optimization of the antigen 
retrieval conditions (pH and temperature), reagent titra-
tion (primary antibody, secondary antibody, fluorophores, 
etc), incubation conditions (time and temperature), 
and blocking of non-specific binding. The sequential 
order of the targets to be tested can also impact assay 
performance. This is an important consideration when 
designing mIF panels and trouble-shooting any potential 
deviations from singleplex IHC or IF.5

In general, it is recommended to label more highly 
expressed targets with lower intensity fluorophores and 
vice versa. As a general recommendation and based 
on the expected kinetics of antibodies in solution, the 
starting incubation time for any primary antibody workup 
is generally for ~30 min between 18°C and 22°C (i.e. 
ambient temperature), while starting TSA fluorophore 
dilutions are typically around 1:100. These two indepen-
dent variables should be tested separately. Between cycles 

of primary antibody application, it is important to ensure 
complete antibody stripping from the previous cycle as 
well as complete antigen retrieval for the next cycle’s 
target of interest.

Because TSA reagents covalently bind to sites 
surrounding the antigen, they can potentially inhibit 
the binding of a subsequent primary antibody through 
steric hindrance. This is commonly termed ‘blocking’ 
or an ‘umbrella effect’. This tends to occur in situations 
where multiple markers reside in a single cell compart-
ment, such as a CD3+, CD8+, PD-1+ T cell, where all 
three markers are expressed on the cell membrane. It is 
possible that, if CD3 and/or CD8 come before PD-1 in 
the panel, sufficient tyramide will be deposited to block 
the PD-1 antigen. If present, this phenomenon can be 
identified when the comparison to singleplex IHC/IF is 
performed. A useful approach to determine antibody/
fluorophore interference or blocking is the drop controls 
method described by Surace et al., to find which one is 
causing the interference.57 Potential corrective actions 
then include increasing the primary antibody concen-
tration(s), reducing TSA fluorophore concentration(s), 
and/or changing the order of targets in the panel, among 
others.

Multispectral technologies require additional consid-
erations during optimization, such as the generation 
of a spectral library and balancing of signal intensities. 
The spectral library facilitates capture using the correct 
spectra from each fluorophore, thus allowing the discrim-
ination of individual signals.19 Generating an appropriate 
spectral library requires imaging single samples stained 
with only one fluorescent dye at a time with a primary 
antibody directed against well-known and highly preva-
lent antigens (e.g. CD20, cytokeratins, vimentin, CD3, 
etc). In multiplex panels, there is risk of bleedthrough 
from a high-intensity signal into the channel for a neigh-
boring low-intensity signal, leading to false positives. 
After the library is established, signal from exogenous 
and endogenous autofluorescence may also be extracted 
using these technologies.5

Panel development should ideally be performed using 
tissues with a full range of known expression patterns 
for the targets of interest. Once the panel is developed 
and validated, these same tissues can be run with each 
batch as additional controls. Final validation requires the 
performance of intrasite reproducibility studies. Intersite 
reproducibility studies will also be required as these tech-
nologies are employed in multi-institutional studies39 58 
and prior to clinical use.

Advantages
There are currently hundreds of commercially available 
purified fluorophores for which detection hardware is 
commonly available and, as such, fluorescence-based 
multiplex staining techniques are widely available. In 
general, four to five different carefully selected fluoro-
phores may be applied, and interrogation of the entire 
slide can be performed in a single round of imaging. When 
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Figure 5  Tissue-based mass spectrometry. Representative 
images from a 40-marker panel applied to human decidua 
and acquired using multiplexed ion beam imaging by time 
of flight. Six-color overlay (top left) and enlarged two-
color insets (border) of a representative sampling of the 
simultaneously acquired markers.

multispectral microscopes are used, the number of fluo-
rophores applied to a single slide can be increased up to 
eight, and tissue autofluorescence can also be subtracted 
from the image. Most publications to date using this tech-
nology have reported 5–10 select ROIs per slide. ROIs 
can be tiled or stitched together to image the whole slide; 
however, this is currently time- and data-intensive, though 
technological advances in imaging whole slides in this 
manner are anticipated in the near future. In contrast 
to the chromogenic IHC approaches discussed above, IF 
has a larger linear dynamic range, facilitating studies of 
marker intensity. Cycled marker labeling approaches for 
mIF are also now being explored,54–56 which substantially 
increase the number of markers that could be quantified 
on a single slide.

Disadvantages
Imaging approaches that do not use multispectral tech-
nologies may be limited in their quantitative ability in 
some circumstances by tissue autofluorescence, while 
those that are multispectral require expensive, dedicated 
instrumentation and currently only image select ROIs. 
Many mIF approaches currently use TSA-based reagents, 
which, while quantitative, are driven by enzymatic amplifi-
cation. Amplification has the advantage of boosting signal 
intensity, however, there is also the risk of overactive tyra-
mide deposition, potentially contributing to an umbrella 
effect and/or signal bleed-through. Newer approaches 
that could potentially overcome this limitation include 
conjugating primary antibodies to DNA barcodes with 

subsequent detection using in situ-based polymerization 
and incorporation of fluorescent dNTP analogs.54 mIF is 
also considerably more time consuming compared with 
bright field in terms of assay development and subse-
quent digital pathology-related steps.

Tissue-based mass spectrometry
Assay principles and workflow
Tissue-based mass spectrometry, also known as elemental 
mass spectrometry immunohistochemistry (EMS-IHC), 
or simply mass spectrometry immunohistochemistry 
(MS-IHC) is emerging as an important method to char-
acterize the spatial organization of proteins within 
biological samples.59–62 EMS-IHC has been used in recent 
work to shed light on autoimmune mechanisms in type 
1 diabetes,62 to define expressional features of marginal 
zone B cells,63 and to relate single cell phenotypes to tissue 
histology in the tumor microenvironment.61 In contrast 
to optical methods that quantify immunofluorescence 
or immunoperoxidase via fluorescent or chromogenic 
reporters, EMS-IHC detects elemental mass tags attached 
to primary antibodies directly in the tissue of interest. A 
single mastermix of all conjugated antibodies is used to 
stain a tissue section using a modified workflow similar 
to conventional IHC. After sample staining, the slide is 
introduced into the mass spectrometer. After a ROI is 
selected, the tissue within the selected region undergoes 
pixel-by-pixel ionization, where each portion of the ROI 
corresponding to a pixel in the final image is ionized 
in sequential fashion. The ions generated from each of 
these pixel measurements are subsequently analyzed 
using TOF mass spectrometry. The abundance of each 
elemental reporter extracted from the TOF spectra for 
each pixel is used to generate an image of the tissue. 
For a 40-marker staining panel, the resultant data would 
comprise 40 greyscale images where the pixel intensity 
in a given image corresponds to the abundance of the 
targeted antigen (figure 5).

There are currently two related approaches to perform 
EMS-IHC. The first is MIBI-TOF.1 In this approach, a 
charged ion beam (usually composed of O2

+) is directed 
at the sample in a vacuum chamber to generate secondary 
ions from the tissue. These secondary ions are extracted 
with an electric field and injected into the TOF for 
measurement. Imaging resolution with MIBI-TOF is an 
adjustable parameter where acquisition time and resolu-
tion can be traded with one another depending on the 
specific application. For example, an imaging resolution 
of 260 nm can be achieved, but the imaging time for 1 mm2 
of tissue is 27 hours. The fraction of the total tissue bulk 
that is consumed when imaging with MIBI-TOF is also 
adjustable, which permits a single field to be rescanned 
multiple times. The second approach is IMC.62 Although 
IMC also uses TOF to quantify the identified proteins, the 
ionization mechanism is distinct. In particular, it employs 
a high-intensity pulsed laser of fixed diameter to ablate 
the tissue in a single pass over the sample. The vaporized 
tissue is subsequently transported via helium carrier gas to 
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an argon inductively coupled plasma where the material 
is ionized prior to TOF analysis. Differences in how the 
sample is ionized result in corresponding differences in 
technical performance (Hyperion Imaging System, Flui-
digmTM), summarized in online supplementary figure 1.64 
Since a laser is used for ablation, the resolution is limited 
to about 1 μm.

Assay optimization and validation
The EMS-IHC workflow for reagent preparation and 
tissue staining is similar in many ways to other immunoas-
says. The epitope retrieval steps are the same as for tradi-
tional IHC (see ‘Standard chromogenic IHC’ section). 
The protein blocking step is also the same. However, 
EMS-IHC workflows do not use HRP for target visualiza-
tion. Thus, a peroxidase block is not necessary. Following 
blocking, slides are incubated with metal-conjugated 
primary antibodies. However, rather than staining with a 
single primary antibody, the entire mastermix of up to 40 
distinct antibodies is applied in one simultaneous step. 
Additionally, because the primary antibodies are directly 
conjugated with their respective metal isotopes, amplifi-
cation with enzymatic secondary antispecies antibodies is 
not required. The sensitivity of this technology compared 
with the benchmark of routine chromogenic IHC staining 
has yet to be determined.

Advantages
The spectral separation between reporter channels and 
the large number of unique elemental mass tags permits 
EMS-IHC to image dozens of proteins simultaneously in 
a single tissue section with minimal channel crosstalk.59 60 
This is in contrast to conventional IF, where tissue auto-
fluorescence and spectral overlap typically limit these 
assays to five to eight channels in routine use.35 65

Disadvantages
Thus far, both MIBI-TOF and IMC have been used 
primarily as research tools. Staff training and reagent opti-
mization for both platforms require significant time and 
expertise in IHC. Channel contamination with hydrides, 
oxides, hydroxides, and cyanides, as well as other isotopic 
impurities is possible, and needs to be recognized and 
compensated for. Before EMS-IHC can transition to 
more routine use, a few key technological advances will 
be necessary. Specifically, commercial availability of 
preformulated mastermixes containing a full antibody 
staining panel will be required to mitigate batch effects 
and permit tissue staining to be performed with existing 
autostainer platforms. Increased automation, including 
real time image autofocusing, sample autoloading, and 
more streamlined field selection will simplify operation 
and repeatability. Lastly, technical improvements that will 
increase the rate of pixel acquisition and efficiency of ion 
extraction are expected to increase sample throughput 
by an order of magnitude or more, permitting shorter 
turnaround times.

Digital spatial profiling
Assay principles and workflow
DSP is served on a novel platform (GeoMxTM) that offers 
non-destructive, simultaneous high-plex quantitative 
measurement of proteins within specific ROIs. Two types 
of primary antibodies are used in this workflow: (1) high-
plex primary antibodies linked to a DNA bar code tag via a 
UV-cleavable linkage for target interrogation; (2) primary 
antibodies conjugated with fluorophores to define up to 
four compartments to help select morphological regions 
for analysis. These antibodies are all applied to a FFPE 
slide following antigen retrieval, similar to other IHC-
based methods. Using the GeoMx DSP, a whole slide 
image of the fluorescent antibodies is acquired. The 
fluorescent signal from this first step is strong enough 
that tissue autofluorescence is not a significant analytic 
concern. The user then selects ROI(s) within these 
compartments. A UV laser is then focused using a dual 
micro-mirror device, cleaving the tags from selected areas 
of the slide. Then, a small pipet is robotically directed to 
the ROI and it samples (or ‘sips’) 1–2 µL of liquid above 
the ROI that contains all of the cleaved DNA tags. These 
tags are transferred by a robot to a multiwell plate and 
counted using the NanoStringTM method with six fluo-
rescent barcodes.66 67 For example, a user could collect 
50 UV-tagged antibodies within a CD68-labeled compart-
ment. If there were three other fluor-labeled compart-
ments within the same ROI (e.g. CD8, cytokeratin, and 
DNA), the user could create 200 variables per ROI. While 
the user cannot see and count the number of macro-
phages or T cells, average levels of 50 proteins within 
the CD68+ macrophage compartment or CD8+ T cell 
compartment in the ROIs can be defined. Figure 6 illus-
trates the concept of molecular compartmentalization 
and shows how counts collected in each compartment 
are measured as independent variables and inform an 
understanding of spatial relationships, even though no 
associated image is produced.

Assay optimization and validation
Similar to previously discussed modalities, each antibody 
must be validated prior to selection. The antibodies used 
for DSP have to then be validated again after DNA tag 
labeling. Antibody validation as well as optimization (titra-
tion) of each antibody in the vendor-designed multiplex 
kits is conducted by the vendor (NanoStringTM). As with 
the aforementioned technologies, final multiplex assay 
performance should be assessed for potential deviations 
of marker detection from singleplex IHC or quantitative 
IF.68

Advantages
To date, DSP has been executed in the 40-plex range 
(limited by validated antibodies), but there are 800 
unique NanoStringTM barcodes, making it theoretically 
possible to perform an 800-plex assay. Perhaps even more 
interesting is the application of the technique for mRNA 
in situ detection. While there is little publicly available 
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Box 1  Checklist for multiplex immunohistochemistry 
(IHC)/immunofluorescence (IF) assay optimization and 
validation: recommended information for inclusion in peer-
reviewed manuscripts

1.	 Optimization of single stain IHC method for each target
–– Primary antibody selection.
–– Use and description of positive and negative controls for assay 

development. Ensure that for non-polymer-based amplification 
methods, concentration-matched isotype controls are negative.

–– Primary antibody and secondary reagent titrations to determine 
optimal signal-to-noise while maintaining sensitivity.

2.	 Combine all single IHC/IF assays into a multiplex panel and ensure 
staining levels of individual markers are still comparable to single 
stain IHC.

3.	 Perform and report reproducibility studies across multiple batches 
and multiple days.

4.	 Positive and negative controls for each marker should be run with 
each staining batch.

5.	 When switching the order of targets in mIF/mIHC panel, switching 
an antibody to a different fluorophore, or adding/removing an anti-
body from the panel, revalidation of the panel to singleplex IHC/IF 
should be performed.Figure 6  Digital spatial profiling. (A) A multiplex 

immunofluorescence image is first used to create molecular 
compartments. (B) The molecular compartments (green=CK, 
yellow=CD45, blue=CD68) are used to guide the UV laser 
and subsequent sipping process in this representative spot 
on a non-small cell lung carcinoma tissue microarray (TMA). 
(C) The amount of signal for a given marker is then assessed 
within a given compartment. Shown here is normalized CD8 
signal in the CD45 compartment (blue) and the remainder of 
the tissue, that is, non-CD45 compartment, (red) by tumor 
tissue spot number on the TMA.

data on assessing mRNA in situ using DSP, the high-plex 
capability, using mRNA probes with some level of redun-
dancy, could easily exceed 800.

Disadvantages
Unlike other methods of IHC or high-plex analysis of 
tissue, DSP cannot generate an image. Heat maps can be 
generated based on the ROIs selected, but the resolution 
of the heat map becomes prohibitively expensive if very 
small ROIs are used to tile a whole slide. The smallest 
region that can be selected is about 10 μm, so it is theo-
retically possible to select a single cell. More commonly, 
a ROI is selected representing an architectural region on 
a whole slide or a TMA spot. Although no image can be 
created, spatial definition can be achieved by manual or 
molecular selection of ROI, and then heat maps or ROI/
TMA spot calculations can be made that use the spatial 
localization as a variable. This results in spatially informed 
quantitative measurements.

Conclusions
In summary, there are a number of potential approaches 
to performing mIHC/IF on FFPE, each with distinct 
advantages and disadvantages. Many of these approaches 
may be considered complementary to each other. It is 

anticipated that some of the higher-plexing approaches 
will remain discovery tools for some time, while some 
of the relatively lower-plex approaches may be applied 
sooner in the clinic. Here, we present initial standards for 
both research scientists and laboratory experts focused on 
early clinical development. The fundamental principle 
for validating and optimizing each of the approaches 
described is that single chromogenic IHC assays are the 
starting point and reference for mIHC/mIF method 
development. In this principle, the final multiplex assay 
should be able to recapitulate the results obtained with 
each single IHC assay. This often takes considered optimi-
zation, with panel design requiring 1–4 months of effort, 
depending on the markers being interrogated. Key steps 
in mIHC/mIF assay development that are recommended 
for inclusion in peer-reviewed manuscripts are provided 
in box  1. Adherence to standards for mIHC/mIF assay 
will facilitate the development of biomarkers for immu-
notherapeutic regimens and ensure these emerging tech-
nologies achieve their diagnostic potential.
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statement on best practices for multiplex 
immunohistochemistry (IHC) and immunofluorescence (IF) 
staining and validation

Taube JM, Akturk G, Angelo M, et al. The Society for Immunotherapy of Cancer 
statement on best practices for multiplex immunohistochemistry (IHC) and 
immunofluorescence (IF) staining and validation. J Immunother Cancer 2020;8:e000155. 
doi: 10.1136/jitc-2019-000155

Since the online publication of this article, the authors have noticed an error in the 
title as well as some formatting errors in the main text. The title has now been updated 
from 'The Society for Immunotherapy in Cancer statement on best practices for multi-
plex immunohistochemistry (IHC) and immunofluorescence (IF) staining and vali-
dation' to 'The Society for Immunotherapy of Cancer statement on best practices for 
multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and 
validation'
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