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Figure 5  Therapeutic activity of SRF231 in hematologic xenograft models. CB.17 SCID mice were subcutaneously engrafted 
with: (A) Raji cells or (B) OPM-2 cells. Mice (n=8/group for Raji, n=6/group for OPM-2) were treated IP with 100 µg isotype 
control (hIgG) or SRF231 3 times/week for 3 weeks; (C) Ri-1 cells, mice (n=7/group) were treated IP with 100 µg hIgG or 
SRF231 on days 0, 3 and 7 postrandomization; (D) HL-60 cells, mice were treated IP with 100 µg hIgG or SRF231 on days 0 
and 7 postrandomization (****p<0.0001 for SRF231 vs hIgG in all 4 models); (E, left panel) SU-DHL-4 cells, mice (n=10/group) 
were treated IP with 100 µg hIgG, 100 µg SRF231 (3 times/week for 3 weeks), 200 µg rituximab (once/week for 3 weeks) or the 
combination; p=0.0004 and 0.0016 for SRF231 vs hIgG and rituximab vs hIgG, respectively, on day 20; p=0.056 for SRF231 
vs SRF231 +rituximab on day 28; (E, right panel) Raji cells, mice (n=10/group) were treated with 100 µg hIgG, 100 µg SRF231 
(3 times/week for 3 weeks), 100 µg rituximab (once/week for 3 weeks) or the combination; p=0.0272 for SRF231 vs SRF231 
+rituximab on day 65. Data are shown as mean tumor volumes±SEM, hIgG, human IgG; IP, intraperitoneally.
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Figure 6  Macrophages contribute to SRF231 antitumor activity. (A) CB17.SCID mice were inoculated with Raji cells 
subcutaneously. When tumors reached 100–150 mm3, day 0, mice (n=10/group) were treated with 100 µg clodronate liposomes 
IV 3 times/week for 2 weeks. On day 4, mice were treated IP with either 100 µg isotype control antibody (hIgG) or SRF231 IP 3 
times/week for 3 weeks. Data are shown as mean tumor volumes±SEM; p=0.0451 for SRF231 vs SRF231+clodronate on day 
22. (B, C) CB17.SCID mice bearing subcutaneous Raji tumors were treated IP with a single 100 µg dose of hIgG or SRF231. 
Mice were euthanized and tumors and plasma were collected at 1, 24, 48, 96 and 168 hours after treatments (n=3/group). 
(B) Representative Raji tumor sections from isotype-treated (168 hours) and SRF231-treated (96 hours) animals were stained 
with F4/80 (left panel, 1X and 10X magnification). F4/80 percent positive expression (middle panel) and necrotic tumor area 
percentage (right panel; **p=0.0035) was quantified with digital image analysis software applied to tumor images from both 
isotype and SRF231-treated animals at the defined timepoints. (C) Plasma MCP-1 expression from Raji tumor-bearing mice at 
the indicated times following a single 100 µg dose of hIgG or SRF231. (D) HL-60 tumor-bearing mice were treated with a single 
100 µg dose of hIgG or SRF231. After 27 and 48 hours, mice (n=5/group) were euthanized, tumors were collected, and tumor 
lysates were analyzed for expression of mouse MCP-1 (left panel) and MIP1α (right panel). hIgG, human IgG; IV, Intravenous; IP, 
intraperitoneally; MCP1, Mouse chemoattractant protein 1; MIP1α, macrophage inflammatory protein 1α; nt, not tested; ROI, 
region of interest.
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SRF231 are dependent on the low-affinity, activating FcγR 
CD32a, which is expressed predominantly by myeloid 
cells.35 In vivo, SRF231 elicits profound antitumor activity 
across multiple hematologic xenograft models in a 
manner involving macrophages.

A leading therapeutic hypothesis around the mech-
anism of action of CD47 antibodies is that blockade of 
CD47/SIRPα is central to lowering the threshold for 
tumor cell phagocytic uptake by macrophages and other 
phagocytic cells that express SIRPα.36 However, a number 
of reports have emerged to suggest that CD47/SIRPα 
blockade alone is not sufficient to trigger phagocytosis 
induction.3 Moreover, the growing number of CD47 
antibodies and CD47 targeting strategies described also 
highlight the unique and overlapping properties of these 
agents. A better mechanistic understanding of distinct 
CD47 blocking agents is warranted and may have clinical 
implications.

Studies described here demonstrate that factors beyond 
CD47/SIRPα blockade contribute to the mechanism of 
action of SRF231. SRF231 acts through at least 2 distinct, 
macrophage-driven mechanisms: (1) induction of tumor 
cell phagocytosis and (2) induction of tumor-intrinsic cell 
death. Both of these events are dependent on the ability 
of SRF231 to bind CD47 on the tumor cell and CD32a on 
the myeloid effector cell.

In the case of phagocytosis induction by macrophages, 
phosphorylation of CD32a is observed and is likely 
important for activation of macrophage effector function. 
CD47/SIRPα blockade alone by SRF231 F(ab’)2 was not 
sufficient to drive phagocytosis when effector cells were 
human monocyte-derived macrophages. In this system, 
CD32a engagement was required, suggesting that SRF231 
acts in part as an opsonizing antibody to drive classic 
ADCP. However, CD47/SIRPα blockade by SRF231 may 
play a more dominant role in driving antitumor activity 
in other cellular contexts. For example, CD47/SIRPα 
blockade can augment ADCP when co-administered 
with opsonizing antibodies.7 Additionally, interruption 
of CD47/SIRPα signaling has been linked to enhanced 
immunosurveillance via myeloid polarization37 38 and 
antigen presentation.39 Therefore, by blocking the 
CD47/SIRPα interaction in addition to engaging CD32a, 
the dual mechanistic properties of SRF231 may be advan-
tageous in driving antitumor activity via multiple mecha-
nisms of action that are context dependent.

The observation that phagocytosis induction with 
SRF231 F(ab’)2 was observed only when mouse, but 
not human macrophages were used as effector cells 
(figure  2B), could be a result of several factors. Mouse 
macrophages may be more dependent on SIRPα than 
human macrophages to inhibit phagocytosis at baseline 
and the two-signal model requiring both an ‘eat-me’ and 
a ‘don’t-eat-me’ signal may be less dominant in the mouse 
setting.40 In addition, the relative affinity differences 
between mouse and human SIRPα to human CD47 may 
influence the degree of phagocytosis in these different 

settings.41 This was observed when comparing phagocy-
tosis using macrophages from Balb/c versus NOD mice 
(online supplementary figure S2A). It is worth noting 
that SRF231 F(ab’)2 potency was still greatly reduced rela-
tive to the full-length molecule in mouse macrophage-
driven phagocytosis, suggesting that FcR engagement is 
still functionally relevant in the mouse, despite the lack 
of CD32a. It is likely that one or more mouse FcR can 
functionally substitute for CD32a and further studies will 
be required to confirm this.

While the ability of anti-CD47 molecules to induce 
apoptosis when immobilized and cross-linked has been 
previously described,17 42 the physiological relevance 
of this phenomenon deserves emphasis. In the case of 
SRF231-mediated tumor cell death induction, the pres-
ence of CD32a could be replaced by immobilizing anti-
body in the correct orientation, suggesting that CD32a 
is likely playing a scaffolding function for this cellular 
outcome. This highlights the independence of cell death 
induction from blockade of the CD47/SIRPα interac-
tion and is consistent with the notion that antibody scaf-
folding via Fc/FcR engagement is supported in FcR- and 
phagocyte-rich tumor microenvironments.

The phagocytosis and cell death assays comparing 
SRF231 to other CD47 blocking antibodies underscore 
the complexity associated with differential properties of 
these antibodies. Unlike SRF231, only CC2C6 induced 
cell death in a soluble form (figure 3C). Cell death induc-
tion for CC2C6 was reported to be linked to shorter 
incubation times, but whether this phenomenon was asso-
ciated with CD47 internalization, downstream signaling 
or binding mode remains poorly understood.18 It is 
likely that many unique antibody attributes contribute 
to the distinct behaviors of different CD47 antibodies. 
In addition to Fc-isotype, factors such as binding kinetics 
(on-rates and off-rates), relative affinity/avidity param-
eters and epitope are likely to also influence overall 
activity. Moreover, the relative expression of prophago-
cytic receptors on various tumor cells that counterbal-
ance CD47 could influence the degree of phagocytosis 
or the requirement for additional macrophage activation 
through Fc-receptor engagement. This confounds the 
comparison of CD47 antibody properties across different 
assay systems. While multiple mechanisms of antitumor 
activity have been proposed for CD47/SIRPα antagonists, 
including SRF231, the context dependency and relative 
contributions of these mechanisms to overall antitumor 
activity warrants further investigation.

A defining feature of SRF231 is its ability to bind to 
CD47 with high affinity without inducing hemaggluti-
nation or RBC phagocytosis, in contrast to 4.2C11 or 
B6H12. The binding mode(s) that allows for SRF231 
RBC binding without hemagglutination is not well under-
stood and requires further study. One possibility may be 
that orientation of the 2 Fab arms of the bivalent SRF231 
molecule are not permissive for simultaneous binding of 
2 RBCs, which is required to seed the lattice formation 
effect leading to hemagglutination.
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The contribution of murine macrophages to overall 
antitumor activity of SRF231 was addressed in vivo. 
Macrophage depletion using clodronate liposomes led to 
a partial reduction of SRF231 antitumor activity in a Raji 
lymphoma xenograft model. The observation that tumor 
growth inhibition was only partially blocked could be due 
to several factors. On the one hand, it suggests that other 
effector cells in the tumor microenvironment are also 
important for SRF231 activity. Alternatively, clodronate 
treatment may have resulted in only partial macrophage 
depletion, still allowing remaining macrophages to exert 
antitumor effects in response to SRF231.

Multiple hematological tumor cell lines were respon-
sive to SRF231 treatment in a subcutaneous xenograft 
setting (figure 5). While several of these cell lines were 
sensitive to SRF231-mediated phagocytosis in vitro 
(figure 1B), tumor cell death is also evident in vivo by the 
increased presence of necrotic areas in tumors treated 
with SRF231 (figure  6B). Additionally, the induction 
of myeloid-derived chemokines MCP-1 and MIP-1α in 
response to SRF231 treatment in vivo is consistent with 
the idea of further myeloid cell recruitment and has been 
previously reported for other CD47-targeting agents.43 44 
Thus, we propose that macrophages (and possibly other 
myeloid effector cells) are central to SRF231-driven anti-
tumor efficacy via induction of tumor cell phagocytosis, 
cell death induction and chemokine-driven amplification 
of myeloid cell-driven responses. In addition, the obser-
vation that SRF231mut (a variant of SRF231 with reduced 
Fc-receptor engagement; data not shown) showed 
decreased antitumor activity relative to SRF231 (online 
supplementary figure S2C), supports a requirement for 
FcR effector function for mediating optimal antitumor 
responses.

The dependence of an IgG4 isotype antibody on FcR-
mediated functions is notable. Therapeutic mAbs that 
drive antibody‐dependent cell‐mediated cytotoxicity 
(ADCC) and ADCP responses are typically an IgG1 isotype 
to maximize engagement of CD16 (FcγRIIIa), an activating 
receptor expressed on natural killer cells that can mediate 
induction of ADCC (eg, alemtuzumab, rituximab).7 20 22 29 
Furthermore, human macrophages express activating FcγRs 
CD32a, CD16a and CD64,45 all of which have submicro-
molar affinity for hIgG1,46 and have been linked to phago-
cytosis effector function in the context of a SIRPα-Fc IgG1 
fusion protein.13 On human macrophages, the relative 
abundance of CD32a is greatest compared with other acti-
vating FcγRs, suggestive of its dominant role in mediating 
FcR-driven effector function.45 Antibodies that are hypoth-
esized to exert therapeutic activity primarily through ADCC 
generally have Fc regions with high FcR engagement such 
as IgG1.

46 47 In contrast, antibodies that are thought to 
work mainly through receptor/ligand blockade are often 
selected to have Fc regions with limited FcR engagement, 
such as IgG4 (eg, natalizumab, nivolumab).48 49 As expected, 
the IgG4 Fc of SRF231 has undetectable affinity for CD16 
and does not lead to CD16-driven ADCC in vitro, while 
affinity for CD32a is low, but measurable (data not shown). 

It is likely that with targets such as CD47, where receptor 
density is sufficiently high and/or clustered,50 dense accu-
mulation of IgG4 molecules is able to overcome a certain 
affinity threshold to allow for CD32a engagement.51

Conclusions
In summary, the investigational anti-CD47 antibody SRF231 
lacks hemagglutination properties and elicits antitumor 
activity via both phagocytosis and cell death. The acti-
vating FcγR, CD32a, is central to the mechanism of action 
of SRF231 despite the hIgG4 Fc. Recent literature has 
implicated an important role for Fc/FcγR engagement 
for therapeutic antibodies targeting T-cell antigens such 
as CTLA-4.52–55 Therefore, activating FcγR engagement is 
becoming increasingly appreciated even for targets in which 
the mechanism is thought to be primarily driven through 
ligand/receptor blockade. A further understanding of how 
CD47/SIRPα blockade and concurrent Fc/FcR engage-
ment contribute toward overall biological activity of CD47/
SIRPα antagonists is warranted.
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