Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety

Yan Ge1,3,#, Haiyan Wang1,3,#, Jinghua Ren1,4, Weilin Liu1,5, Lingjuan Chen1,4, Hongqi Chen1,6, Junjie Ye1,7, Enyong Dai1,8, Congrong Ma1,2, Songguang Ju3, Z. Sheng Guo1,2, Zuqiang Liu1,2*, and David L. Bartlett1,2*

1Department of Surgery, University of Pittsburgh School of Medicine; 2UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; 3Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China; 4Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; 5Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China; 6Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China; 7Department of Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China, 8Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China

Running title: Oncolytic virus delivering tethered IL-12 safe and effective

Y. Ge and H. Wang contributed equally to this paper.

*Corresponding authors:

David L. Bartlett, MD
E-mail: Bartlettdl@upmc.edu

Zuqiang Liu, PhD
E-mail: liuz@upmc.edu
Figure S1. Schematic diagram of viral IL-12 variants. vvDD-IL-12, vvDD-IL-12-FG, and vvDD-IL-12-RG were generated by homologous recombination of murine *IL-12* variants into the *tk* locus of vaccinia viral genome, carrying secreted IL-12, IL-12-flexible linker (G₄S)₃-GPI anchor sequence amplified from human CD16b, and IL-12-rigid linker A(EA₃K)₄AAA-GPI anchor sequence amplified from human CD16b, respectively.
Figure S2. Viral delivered IL-12 expression in tumor cells. Tumor cell MC38-luc (3×10^5 cells), B16 (2×10^5 cells), or AB12-luc (3×10^5 cells) were mock-infected or infected with vvDD, vvDD-IL-12, vvDD-IL-12-FG, and vvDD-IL-12-RG at a MOI of 1. The cell pellets were harvested 24 hours post-infection to measure membrane-bound IL-12 using flow cytometry (cell surface staining).
Figure S3. vvDD-IL-12-FG treatment produces tethered IL-12 in tumors and is safe and effective in therapeutic tumor models. B6 mice were i.p. inoculated with 5×10⁵ MC38-luc cells and treated with PBS, vvDD, vvDD-IL-12, vvDD-IL-12-FG, or vvDD-IL-12-RG at 5×10⁸ PFU/mouse nine days post-tumor inoculation (n=3~5). Sera were collected daily until day 5 to measure the amount of IL-12 (A) and IFN-γ in sera (B). The mice treated above were sacrificed at day 5 to measure IL-12 membrane association in tumor using flow cytometry (C). BalB/c mice were i.p. inoculated with 4×10⁵ CT26-luc (D) or AB12-luc cells (E), respectively, and treated with PBS, vvDD, vvDD-IL-12, or vvDD-IL-12-FG at 2×10⁸ PFU/mouse five days post-tumor inoculation and a log-rank (Mantel-Cox) test was used to compare survival rates between these two tumor models. * P<0.05; ** P<0.01; *** P<0.001; and **** P<0.0001. ns: not significant.
Figure S4. IL-12-variant treatments modify the tumor microenvironment. B6 mice were inoculated i.p. with 5×10^5 MC38-luc cells and treated with PBS, vvDD, vvDD-IL-12, or vvDD-IL-12-FG at 2×10^8 PFU/mouse nine days post-tumor inoculation. Tumor-bearing mice were sacrificed five days post-treatment and primary tumors were collected and analyzed using RT-qPCR to determine IFN-γ (A), PD-1 (B), PD-L1 (D) and CD105 (G), using flow cytometry to determine PD-1^+CD4^+ (C), PD-L1^+CD45^+ (E), PD-L1^+CD11b^+ (F) and TGF-β^+CD11b^+ (H) cells. * P<0.05; ** P<0.01; *** P<0.001; and **** P<0.0001. ns: not significant.
Figure S5. Antibodies can deplete relative cell population efficiently *in vivo*. B6 mice were i.p. inoculated with 5×10^5 MC38-luc cells and treated with α-CD8 Ab (250 µg per injection), α-CD4 Ab (150 µg per injection), PK136 (300 µg per injection) as shown in Fig. 3 P. Blood were collected from mouse tail vein and stained to monitor NK1.1$^+$ cells at day 2 and day 8 after last antibody injection (A), CD4$^+$ T cells 3 days after last antibody injection and CD8$^+$ T cells 5 days after last antibody injection (B) by flow cytometry, respectively. * $P<0.05$; ** $P<0.01$; *** $P<0.001$; and **** $P<0.0001$. ns: not significant.