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CD38hi macrophages are characterized by the secretion of 
proinflammatory cytokines
Our recent publication concerning CD38hi macro-
phages revealed the differential expression of CD80 and 
DC-SIGN compared with CD38lo macrophages, as well 
as the production of higher levels of proinflammatory 

cytokines, such as IL-6 and TNF-α.27 In the present study, 
we performed a Luminex experiment to simultaneously 
detect 65 cytokines in supernatant collected from both 
CD38hi and CD38lo macrophages. We not only validated 
that CD38hi macrophages produce more IL-6 and TNF-α 
than CD38lo macrophages but also found that these 
cells also produced more IFN-γ and related cytokines, 
including CXCL9, CXCL10 and CXCL11 (figure 6). Simi-
larly, utilizing NanoString technology, we also demon-
strated that the IFN-γ gene level trended higher in the 
patients who harbored high CD38+CD68+ macrophages 
(n=7), compared with the patients who harbored low 
CD38+CD68+ macrophages (n=7, online supplementary 
figure 5). However, the statistical significance was not 
reached.

DISCUSSION
In this study, we used a range of readily translatable 
methods, including mIHC/IF, to confirm the expression 
of CD38 by macrophages and myeloid immune cells in the 
TME of a cohort of patients with HCC treated with anti-
PD-1/PD-L1 blockade therapy. Further analysis of CD38 
density established that higher CD38+ immune infiltrate 
and macrophage levels within the TME was associated 
with an improved immunotherapeutic response. Patients 

Table 4  Change in the log-likelihood of the models with 
added predictive terms

Variables ∆LR� 2 P value

PFS

 � Proportion of CD38+ cells + PD-L1 + density 
of CD8+ T cells vs proportion of CD38+ cells

7.86 0.0197*

 � Density of CD38+CD68+ macrophages + 
PD-L1 +density of CD8+ T cells vs density of 
CD38+CD68+ macrophages

8.82 0.0121*

OS

 � Proportion of CD38+ cells + PD-L1 + density 
of CD8+ T cells vs proportion of CD38+ cells

2.24 0.3260

 � Density of CD38+CD68+ macrophages + 
PD-L1 +density of CD8+ T cells vs density of 
CD38+CD68+ macrophages

1.03 0.5987

*Statistically significant, as determined with a likelihood ratio test.
LR, likelihood ratio; OS, overall survival; PD-L1, programmed death-
ligand 1; PFS, progression-free survival.

Figure 5  ORR for the predictive value of CD38+ leukocyte proportion and macrophage density. (A) Representative image of 
PD-L1+ tumor cells (highlighted in brown) in the HCC TME. Cell nuclei are counterstained with hematoxylin for IHC (blue). (B) 
Representative mIHC/IF image of CD8+ T cells (highlighted in green) in the HCC TME. Cell nuclei are counterstained with DAPI 
for mIHC/IF (blue). (C) ORRs of each biomarker. Images are shown at a magnification of 400× for A and B. HCC, hepatocellular 
carcinoma; IHC, immunohistochemistry; mIHC/IF, multiplex immunohistochemistry/immunofluorescence; ORRs, overall 
response rates; PD-L1, programmed death-ligand 1; TME, tumor microenvironment.
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Figure 6  CD38+ macrophages secrete proinflammatory cytokines. (A) IFN-γ and related cytokine secretion levels were 
determined by Luminex using cell culture supernatant. The data represent the mean±SD. (B) Heat map showing the 
standardized, averaged, logarithmically transformed Luminex concentrations for CD38hi and CD38lo macrophages. Analyte 
concentrations higher than the average are depicted in red, while the concentrations lower than the average are depicted in 
blue. Hierarchical clustering using Euclidean distance with complete linkage are shown for both analytes and samples. IFN-γ, 
interferon γ; VEGF, vascular endothelial growth factor.
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with a high proportion of intratumoral CD38+ immune 
cells achieved an ORR of 43.48%, compared with 3.85% 
for those with a low proportion. This improved response 
rate translated to a longer mPFS (8.21 months) and mOS 
(19.06 months). A high CD38+CD68+ macrophage density 
was also associated with a better ORR of 29.41% and 
longer mOS of 34.43 months. None of the classical clin-
icopathological variables including viral hepatitis status, 
PD-L1 expression or CD8+ T cell density were associated 
with survival in our cohort.

CD38 serves an important role in lymphocyte activa-
tion.65 70 Previous studies by our group have ascertained the 
involvement of activated lymphocytes and CD38 in HCC 
prognosis,25 26 and expression of CD38 has also been shown 
to be a prognostic marker in other types of cancers.71 72 We 
have also recently studied the effects of CD38 on macro-
phages and found that increased CD38 expression in HCC 
is associated with activation of the M1 pathway in macro-
phages.27 This process is characterized by increased CD80 
expression and the induction of IL-6 and TNF-α secretion, 
all of which contribute to increased anti-tumor immunity 
in HCC.27 In the present study, we further demonstrated 
that CD38+ macrophages produce significantly more IFN-γ 
and related cytokines than those that lack CD38 expression. 
This may at least partially explain the relatively favorable 
response to anti-PD-1 therapy in patients whose tumors 
harbor increased numbers of this cell type.73 74

Cancer immunotherapy is mechanistically different 
from other treatment modalities, such as cytotoxic thera-
pies and small module inhibitors, as it can target the TME 
as well as the tumor itself. Thus far, ICB therapy represents 
a promising novel treatment modality for a wide range of 
cancers. However, overall patient response rate to PD-1/
PD-L1 inhibitors remains relatively low in certain types 
of cancers, limiting its application. This may be due to 
variability in the immune microenvironment between 
different types of cancer. Thus, further investigation of 
potential biomarkers in different cancers is of the utmost 
importance to identify patients most likely to benefit 
from treatment. With nivolumab failing to achieve statis-
tical significance for OS in patients with advanced HCC 
when compared with sorafenib in the CHECKMATE 459 
study (HR=0.85; 95% CI: 0.72 to 1.02; p=0.0752), it is thus 
paramount to identify patients most likely to benefit from 
ICB.75

Multiple previous studies have identified correlations 
between therapeutic response rates and PD-L1 expression 
in tumors, likely due to the close relationship between 
PD-L1 and PD-1. Increased PD-L1 expression is generally 
thought to be associated with an increased response rate 
and improved clinical benefit in PD-1 blockade therapy. 
However, these findings have not been reported across all 
tumor types.76–81 In the present study, we examined the 
PD-L1 TPS in our cohort using clone SP263, and found it 
not to be of predictive value (p=0.0716; table 2), consis-
tent with prior clinical trials.7 8 Thus, the investigation of 
alternative immunosuppression mechanisms is necessary 
to identify more effective biomarkers.

One such mechanism thought to be of relevance is the 
adenosinergic pathway, where extracellular adenosine 
exerts local immunosuppressive effects through tumor-
intrinsic and host-mediated mechanisms. In a recent 
study, CD38 was found to be expressed by a subset of 
tumors with high levels of basal or treatment-induced 
infiltration.65 Other previous studies have also demon-
strated that tumors treated with PD-1/PD-L1-specific 
antibodies develop resistance to treatment through the 
upregulation of CD38, which follows the release of all-
trans retinoic acid and IFN-β in the TME. This results in 
the suppression of CD8+ T cell function via the adenosine 
signaling pathway.65 In our study, we have observed that 
PD-L1 expression is higher for CD38+CD68+ macro-
phages, compared CD38−CD68+ macrophages by using 
mIHC/IF staining (online supplementary figure 6). 
However, PD-1+CD38hi CD8+ cells, which were reported 
to be predictive of immunotherapy response in advanced 
melanoma, failed to do so in HCC (online supplemen-
tary figure 7).82 Thus, the biological link between CD38 
and PD-L1 appears to be complex and further studies are 
warranted.

Previously, CD38 was found to be expressed by macro-
phages isolated from mice,83 84 cell lines85 and was also 
found in human ex vivo experiments.64 Recently, our lab 
has also shown in vivo CD38 expression on macrophages 
in humans with HCC.27 This colocalization is also repli-
cated here (figures  2 and 3). The present study estab-
lished that CD38 expression in the HCC TME, particularly 
by immune cells such as macrophages, is associated with 
responsiveness to immunotherapy. Gene expression data 
from the present study also ascertained that CD38 is asso-
ciated with improved prognosis in HCC, in accordance 
with the results of previous studies.25 86 Taken together, 
these results suggest that CD38 is part of a complex inter-
play between the inflammatory response and immune 
suppression via adenosine production and represents a 
potential biomarker for HCC immunotherapy.

Hepatitis B and C are integral in the pathogenesis of 
HCC and phenotype of HCC-infiltrating immune cells.87–89 
Composition of CD38+ cells as well as CD38+CD68+ macro-
phages between patients with or without viral hepatitis 
(31 vs 18) was not different (online supplementary figure 
8A,B). Interestingly when we examine the predictive 
value of CD38+ cells and CD38+CD68+ macrophages in 
viral-related HCC and non-viral-related HCC separately, 
both biomarkers are only significantly associated with 
responsiveness in the viral-related HCC (online supple-
mentary figure 8A,B), but not in the non-viral-related 
HCC (online supplementary figure 8C,D).

The ORRs to ICB was significantly higher among 
patients with high proportion of total CD38+ cells 
compared with patients with low proportion (72.73% 
vs 0%) in viral-related HCC. Similarly, the ORRs to ICB 
was significantly higher among patients with high density 
total CD38+CD68+ macrophages compared with patients 
with low density (38.10% vs 0%, online supplementary 
figure 8E,F). On the contrary, comparable ORR was 
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noted between high and low subgroups in the non-viral-
related HCC (online supplementary figure 8E,F). As 
shown in online supplementary figure 9A–D, patients 
with viral-related HCC with either a high total CD38+ 
cell proportion or high density of total CD38+CD68+ 
macrophages had better PFS and OS when treated with 
ICB. (online supplementary table 7). No PFS/OS differ-
ences were noted in patients with non-viral-related HCC 
(online supplementary table 8, figure 9E–H). These 
findings suggest linkage between CD38 and viral-related 
HCC. However, more studies would be required to under-
stand this relationship. As both the viral-related and non-
viral-related HCC cohorts in this study is relatively small, 
further validation is needed.

In addition to the use of PD-1-specific monotherapy 
ICB in HCC, multiple strategies involving a combination 
of treatments are currently being evaluated. IMbrave150 
(NCT03434379), a phase III,90 open-label, multicenter, 
randomized study evaluating combined atezolizumab and 
bevacizumab treatment versus sorafenib in patients with 
advanced HCC, recently met its coprimary endpoint; with 
improvements in both PFS and OS.90 The associations 
between CD38+ immune cell density and the outcome 
of combined ICB strategies warrant further evaluation.
The detection of biomarkers using peripheral blood 
mononuclear cells for cancers have been a hot topic in 
the scientific community.91–93 In our study, we detected 
CD38+CD68+ macrophage in peripheral blood mononu-
clear cells (PBMCs) (online supplementary figure 10). It 
would be interesting to study its predictive value in a clin-
ical trial prospectively.

As the overall patient response rate to ICBs remains 
relatively low in some other types of cancers, we also 
looked for prior studies of anti-PD-1 treatment and for 
which transcriptomic data were publicly available to 
investigate if the transcription level of CD38 could serve 
as an indicator of responsiveness to PD-1 axis blockade 
in those cancers. Two melanoma studies satisfied these 
requirements,94 95 while one was found for non-small cell 
lung cancer (NSCLC).96 For each study, we compared 
the CD38 transcription levels between patients who were 
responsive or non-responsive to anti-PD-1 treatment. We 
found no significant difference between the groups in 
the melanoma studies but found a significant difference 
between the groups in the NSCLC study (online supple-
mentary figure 11), suggesting that the predictive poten-
tial of CD38 to be cancer type specific.

To the best of our knowledge, our study is the first 
to demonstrate that the expression of CD38 by certain 
immune subsets, such as macrophages, is a potential 
biomarker that predicts patient response to immuno-
therapy. While our anti-PD-1/PD-L1-treated HCC cohort 
is the largest of its kind to be reported thus far with 
potential biomarker correlative studies (n=49) compared 
with previous studies by Harding et al (n=27),97 Ang et al 
(n=17),98 and Ma et al (n=9)99 confirmatory studies in 
larger multinational cohorts will be needed to validate 
our observations. The present study is somewhat limited 

by the retrospective, and heterogeneous nature of this 
cohort, with multiple types of immunotherapy being 
received by the patients. However, in this study we have 
also tested for the anti-PD-1/PD-L1 single agent treat-
ment cohort (n=30) and found that both biomarkers, 
namely intratumoral total CD38+ cell proportion and 
CD38+CD68+ macrophage density are associated with 
improved PFS and OS.

Another limitation is the choice of diagnostic PD-L1 
clone used in this study. Given that a significant number 
of patients in this cohort are treated with anti-PD-L1 
alone as well as anti-PD-1 alone, a comparison of 28–8 and 
SP263 clones would have been appropriate. However, the 
diagnostic clone 28–8 is not available in Singapore.

Notwithstanding, a high proportion of total CD38+ 
cells, as determined by IHC, predicts response to 
ICB and is associated with superior mPFS and OS in 
advanced HCC. Use of IHC-based techniques to eval-
uate for CD38 has its advantage as it is readily available 
and optimized in most diagnostic pathology depart-
ments enabling ease of translation and access in clin-
ical practice. It is already in use as a diagnostic antibody 
for blood cancers, such as leukemia, plasmacytoma and 
multiple myeloma.100 101

CONCLUSION
In conclusion, the present study established an associ-
ation between CD38 expression and the response to 
immunotherapy in HCC, using readily available and 
translatable IHC-based techniques. Most notably, to the 
best of our knowledge, the present study is the first to 
report a predictive marker of responsiveness to immu-
notherapy in HCC, using the largest reported cohort to 
date. Future investigations will involve the use of a larger, 
multinational cohort to confirm our results. We strive to 
apply these findings as a routine test in clinical practice, 
identifying patients most suited for ICB.
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