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needed to explore the mechanism of ICI-related cardiac 
injury. Our research results revealed that the cardiac 
function decreased apparently in mice 4 weeks after the 
first treatment (two cycles) of PD-1 inhibitor, in terms of 
both systolic function and diastolic function, which was 
consistent with previous clinical findings.32

As an independent risk factor for cardiovascular 
diseases, cardiac senescence contributes to elevated 

cardiovascular morbidity and mortality.33 Senescence 
leads to increased cellular senescence in a number of 
tissues and is frequently associated with increased expres-
sion levels of the senescence biomarker, p16Ink4a, impaired 
proliferation, and tissue regeneration.34 This study found 
that p16Ink4a was localized mainly in cardiomyocytes, indi-
cating that cardiomyocytes were most susceptible to senes-
cence during PD-1 inhibitor–induced cardiac senescence. 

Figure 6  miR-34a-5p transferred by exosomes caused cardiac senescence. (A) Cell cycle distribution was analyzed, 
*p<0.05 vs control; ▲p<0.05 vs exosomePD-1 inhibitor+miR-34a-5p inhibitor in χ2 analysis, n=6. (B) Percentage of β-galactosidase (β-gal)-
positive cells. (C) Representative images of senescence-associated β-galactosidase (SA-β-gal) staining. Scale bar: 50 µm. 
(D–F) Quantitative reverse transcription-PCR analyzed p21, p16, and telomere length mRNA levels. (G) Relative telomerase 
activity was measured. Each column represents the mean±SD of six independent experiments. *p<0.05 vs control; ▲p<0.05 vs 
exosomePD-1 inhibitor+miR-34a-5p inhibitor in repeated measures analysis of variance, n=6. NC, negative control; miR, microRNA; PD-1, 
programmed cell death 1.
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In tumor cells, ICIs promoted telomere dysfunction and 
suppressed tumor progression by the activation of DNA 
damage checkpoints, which induced cell cycle arrest.35 
The present study evaluated the effect of a PD-1 inhib-
itor on cardiac dysfunction and explored potential mech-
anisms. The results indicated that the PD-1 inhibitor 
induced cardiac dysfunction, accompanied by cell cycle 
arrest and telomere shortening.

Exosomes are vesicles of endocytic origin released by 
many cells. These vesicles can mediate communication 
between cells, facilitating processes such as proinflam-
mation, pro-senescence, and miR transfer.36 Indeed, 
only PD-1 inhibitor treatment did not induce cellular 
senescence in cardiomyocytes in vitro. However, oppo-
site effects were found in vivo. Hence, it was speculated 
that another kind of cells might take part in PD-1 inhib-
itor–related cardiac dysfunction. The histopathological 
evaluation revealed that macrophages infiltrated in the 

cardiac tissue after ICIs treatment.37 Macrophages are 
important cells that modulate inflammation. Indeed, 
under some circumstance, macrophages promote inflam-
mation and extend injury, thus leading to cardiac senes-
cence–related injury.38 Previous studies suggested that 
exogenous stimuli–activated M1 macrophages induced 
resident cell injury through exosomal miR delivery.21 
This study showed that treatment with exosomes from 
PD-1 inhibitor–treated macrophages increased the levels 
of miR-34a-5p in cardiomyocytes. The results showed a 
correlation between the levels of miR-34a-5p transferred 
to cardiomyocytes and cellular senescence. These results 
confirmed the hypothesis that the PD-1 inhibitor induced 
cardiac injury through macrophage-derived exosome 
transfer.

miRs, short endogenous strands of RNAs of ∼18–24 
nucleotides in length, are post-transcriptional regulators 
of gene expression.39 Microarray profiling analyses in our 

Figure 7  Exosomal miR-34a-5p sponged PNUTS to induce cardiac senescence. (A–C) Cardiomyocytes were transfected with 
Ad-PNUTS or Ad-Ctrl as control. Transfection efficiency was determined using quantitative reverse transcription-PCR (qRT-
PCR) (A) and Western blot analysis (B and C). *p<0.05, vs Ad-PNUTS in repeated measures analysis of variance (ANOVA), n=6 
(qRT-PCR), n=3 (western blot). (D) Cell cycle distribution was analyzed. *p<0.05 vs control; ▲p<0.05 vs exosomePD-1 inhibitor+Ad-
PNUTS in χ2 analysis, n=6. (E) Percentage of β-galactosidase (β-gal)-positive cells. (F) Representative images of senescence-
associated β-galactosidase (SA-β-gal) staining. Scale bar: 50 µm. (G–I) qRT-PCR analyzed p21, p16, and telomere length mRNA 
levels. (J) Relative telomerase activity was measured. *p<0.05 vs control; ▲p<0.05 vs exosomePD-1 inhibitor+Ad-PNUTS in repeated 
measures ANOVA, n=6.
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present study identified differentially expressed miRs in 
PD-1 inhibitor treated and normal mice hearts, most of 
which has been identified with crucial role in cardiac func-
tion. The miR-221/222 family is one of the first miRNA 
families found to be associated with cardiac fibrosis and 
immune-related cardiomyopathy.40 41 Researchers also 
identify a heart failure–dependent increase in miR-145 
expression in human hearts and uncover the role of 
miR-145 in promoting cell senescence.42 The role of 
miR-34a in regulating cell senescence, development, 
and vitality has been extensively highlighted in a variety 
of cells.43 Also, miR-34a can be profoundly impacted by 
immune signaling.44 This study found that ICIs induced 
the accumulation of miR-34a-5p in the exosomes and its 
transfer to cardiomyocytes, thus leading to cardiac senes-
cence. miR-34 has been reported to promote cell cycle 
arrest,45 coincident with the finding of the present study 
that exosomal-delivered miR-34a-5p inhibited cell cycle 
in the G0/G1 phase. miR-34a triggers senescence partly 
through the genetic inhibition of PNUTS in cardiomy-
ocytes.46 This observation led to the exploration of the 
potential role of a PD-1 inhibitor in modulating miR-
34a-dependent PNUTS expression in cardiomyocytes. 
The results showed that exosomePD-1 inhibitor significantly 
promoted miR-34a-5p transfer but inhibited PNUTS in 
cardiomyocytes. A study of the mechanistic role of miR-
34a in regulating cardiac function unveiled PNUTS as a 
target of miR-34a, which was downregulated with age.47 
PNUTS has emerged as a component of the DNA damage 
response that is recruited to DNA damage sites and inhibits 
cell cycle arrest,48 which was consistent with the findings 
of the present study that enforcing PNUTS expression 
relieved the cell cycle arrest caused by exosomePD-1 inhib-

itor. PNUTS interacted with telomere regulator, alleviating 
DNA damage–related telomere shortening and thus 
conferring a protective effect.49 Interestingly, the down-
regulation of the expression of PNUTS gene and protein 
induced by exosomePD-1 inhibitor was accompanied by telo-
mere length shortening in cardiomyocytes.

Some limitations existed in the current study. PD-1 
inhibitor–related cardiotoxicity was only explored 
in animal model. Clinical experiments to demon-
strate relationship between the miR-34a-5p levels and 
immunotherapy-related cardiotoxicity will carry on in the 
future. Meanwhile, miR-34a-5p knock-out (KO) animal 
will be applied to confirm our findings in the future study.

CONCLUSIONS
This study provided compelling evidence for the role 
of a PD-1 inhibitor in inducing cardiac senescence that 
accounted for cardiac injury. The exosomes derived from 
PD-1 inhibitor–treated macrophages markedly promoted 
cardiomyocyte senescence. The associated mechanism 
was also deciphered; specifically, exosomes transferred 
miR-34a-5p, leading to the inhibition of PNUTS in cardio-
myocytes, thereby resulting in cardiac senescence. These 

findings might provide a new target in ameliorating 
cardiac injury in patients receiving immunotherapy.
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