Impact of Complementary Substances on T Cell Proliferation and Memory

RM Powell*, MJW Peeters, A Rachbech, PT Straten. National Center for Cancer Immunotherapy, Herlev, Denmark

Background Overexpression of TAM receptors, including MERTK, in some cancers are integral for chemoresistance, proliferation and metastasis.1 Our group has previously demonstrated that T cells also express MERTK and engagement of MERTK signaling is responsible for increased proliferation, functional capacity and metabolic fitness.2 It is therefore important to further study the effect of MERTK inhibition on T cell function in the context of cancer treatments where MERTK inhibitors may play a role. Here we provide evidence that MERTK inhibition impacts greatly on T cell proliferation, specifically reducing phosphorylated mTOR. We have also demonstrated that MERTK expression is increased on CD8 central memory subsets during longterm expansion providing evidence that this signaling pathway may be important for sustaining T memory responses.

Materials and Methods Flow cytometric analysis was used to investigate the effect of titration of MERTK small molecule inhibitor UNC2025 on healthy donor T cells activated with CD3/CD28 dynabeads. Cell trace dye was used to track proliferation of CD4 and CD8 T cells along with markers of differentiation (CCR7 and CD45RO), activation (CD137) and function (IFNγ, TNα and IL-2). MERTK signaling was assessed using phospho flow cytometric methodology of phosphorylated mTOR, AKT, ERK1/2, p38-MAPK and STAT5. Long term cultures of donor T cells of up to 28 days were investigated for MERTK expression alongside memory differentiation.

Results We demonstrated that moderate concentrations of MERTK inhibitor reduced proliferation of activated T cells. Despite inhibition of cell division, cell size still increased 2 fold compared to resting cells and cell viability remained unchanged. Additionally, the proportion of central memory to effector memory populations and intracellular cytokine production was not impacted. Analysis of molecules involved in MERTK signaling revealed that phosphorylated mTOR was significantly modulated following the addition of MERTK inhibitor. Long term culture of CD8 T cells demonstrated MERTK was significantly increased following early and late re-stimulation, and expression of MERTK was strongly associated with central memory subsets.

Conclusions Our results demonstrate that inhibition of MERTK signaling on T cells reduces cell division where mTOR is significantly impacted. Despite this, other functional aspects, such as intracellular cytokine production remain.
unchanged. Therefore, interruption of MERTK signaling on T cells has a specific effect on cell division rather than cytotoxic function on a cell by cell basis. This has potential ramifications on the use of MERTK inhibitors to treat tumors where the ability to form substantial cytotoxic T cell populations might be reduced. In addition, increased MERTK expression on central memory subsets during long term culture suggests this signaling pathway could be critical for generating memory pools of T cells and provide new avenues for the improvement of adoptive T cell therapy protocols.

REFERENCES


P01.14 EXCESSIVE BIOLOGICAL AGEING OF CIRCULATING NEUTROPHILS IN CANCER PROMOTES TUMOR PROGRESSION
1CA Reichel*, 1L Mittmann, 1J Schaubëcher, 1R Hennel, 1G Zuchtriegel, 1M Canis, 1O Gires, 1F Krombach, 1L Holdt, 1S Brandau, 1T Vogl, 1K Lauber, 1B Uhl. 1LMU München, Munich, Germany; 2University of Duisburg-Essen, Essen, Germany; 3University of Münster, Münster, Germany
10.1136/jitc-2020-ITOC7.27

Background Beyond their well-established role in host defense, neutrophils are increasingly recognized to contribute to the pathogenesis of malignant tumors. Recently, ageing of mature neutrophils in the systemic circulation has been identified to be critical for these immune cells to properly unfold their anti-infectious properties. The role of neutrophil ageing in cancer is still unknown.

Material and Methods Employing syngeneic mouse models of head and neck squamous cell carcinoma (cell line SCC VII) and breast cancer (cell line 4T1), cytokine expression (by multiplex ELISA), neutrophil trafficking (by multi-channel in vivo microscopy and flow cytometry), and neutrophil function (in vitro assays) were analyzed.

Results Here, we show that signals released during early tumor growth promote excessive biological ageing of circulating neutrophils as indicated by age-related changes in their molecular repertoire. These events facilitate the accumulation of these highly reactive immune cells in malignant lesions and endow them with potent pro-tumorigenic functions. In particular, excessively aged neutrophils release neutrophil elastase which, in turn, stimulates the proliferation of cancer cells. Counteracting accelerated biological ageing of circulating neutrophils by blocking the chemokine receptor CXCR2 effectively suppressed tumor growth.

Conclusions Our experimental data uncover a potent self-sustaining mechanism of malignant tumors in fostering pro-tumorigenic phenotypic and functional changes in circulating neutrophils, thus supporting tumor progression. Interference with this aberrant process might provide a novel, already pharmacologically targetable strategy for cancer therapy. This study was supported by Deutsche Forschungsgemeinschaft (DFG), Sonderforschungsbereich (SFB) 914.


P01.15 PERSONALIZED COMBINATION OF NEOADJUVANT DOMATINOSTAT, NIVOLUMAB (NIVO) AND IPILUMUMAB (IPI) IN MACROSCOPIC STAGE III MELANOMA PATIENTS STRATIFIED ACCORDING TO INTERFERON-GAMMA (IFN-GAMMA) SIGNATURE – THE DOMINI STUDY

Background The previous OpACIN and OpACIN-neo studies investigating neoadjuvant IPI plus NIVO have demonstrated high pathologic response rates (74–78%) and favorable long-term outcomes for patients (pts) with a pathological response; at 36 and 18 months follow up only 1/71 (1.4%) responders has relapsed. In contrast, pathological non-responders have a poor prognosis; 15/23 (65.2%) have relapsed so far. This emphasizes the need for baseline biomarkers predictive of non-response and new neoadjuvant treatment combinations for these pts. In our previous studies, baseline IFN-γ signature high pts were more likely to respond to IPI plus NIVO. The DONIMI study tests the combination of NIVO ± IPI combined with a class 1 histone deacetylase inhibitor, domatinostat (DOM), according to the pts IFN-γ signature. We have developed a neoadjuvant IFN-γ signature, based on the signature previously described by Ayers et al., that will be used for the first time to classify pts in this prospective trial.

Trial design This two-center investigator-initiated phase 1b study aims to assess the safety and feasibility of neoadjuvant NIVO ± DOM ± IPI in 45 stage III melanoma pts with macroscopic de-novo or recurrent disease. IFN-γ signature high pts (n=20) will be randomized (stratified by center) to Arm A (2 cycles NIVO 240 mg q3wk) or Arm B (2 cycles NIVO 240 mg q3wk + DOM 200 mg twice daily (BID), d1-14, q3wk). IFN-γ signature low pts (n=25) will be randomized to Arm C (2 cycles NIVO 240 mg q3wk + DOM 200 mg BID, d1-14, q3wk) or Arm D (2 cycles NIVO 240 mg q3wk + IPI 80 mg q3wk + DOM 200 mg once daily (OD), d1-14, q3wk). Based on safety data of the first 5 pts in arm D, the remaining pts will be treated with either a higher dosing scheme (200 mg BID, d1-14, q3wk), a lower dosing scheme (100 mg OD, d1-14, q3wk) or the same dosing scheme (200 mg OD, d1-14, q3wk). The primary endpoint is safety and feasibility. A treatment arm will be declared as not feasible if 2/5 or 3/10 patients cannot adhere to the planned time of surgery (week 6 ± 1week) due to treatment-related adverse events. Biopsies (week 0, 3), blood samples (week 0, 3, 6, 12) and feces (week 0, 3, 6) will be collected for translational research. To date, 7 patients have been enrolled.

Clinical trial information NCT04133948

Disclosure Information L.L.M. Reijers: None. E.A. Rozeman: None. P. Dimitriadis: None. O. Krijgsman: C. Other Research Support (supplies, equipment, receipt of drugs or other in-kind support); Modest; BMS. L.J.W. Bosch: None. S. Cornelissen: None. J. Bouwman: None. J.M. Versluis: None. D.