unchanged. Therefore, interruption of MERTK signaling on T cells has a specific effect on cell division rather than cytotoxic function on a cell by cell basis. This has potential ramifications on the use of MERTK inhibitors to treat tumors where the ability to form substantial cytotoxic T cell populations might be reduced. In addition, increased MERTK expression on central memory subsets during long term culture suggests this signaling pathway could be critical for generating memory pools of T cells and provide new avenues for the improvement of adoptive T cell therapy protocols.

REFERENCES


P01.14 EXCESSIVE BIOLOGICAL AGEING OF CIRCULATING NEUTROPHILS IN CANCER PROMOTES TUMOR PROGRESSION

Abstract: This two-center investigator-initiated phase 1b study aims to assess the safety and feasibility of neoadjuvant NIVO ± DOM ± IPI in 45 stage III melanoma pts with macroscopic de-novo or recurrent disease. INF-γ signature high pts were more likely to respond to IPI plus NIVO. The DONIMI study tests the combination of NIVO ± IPI combined with a class 1 histone deacetylase inhibitor, domatinostat (DOM), according to the pts IFN-γ signature. We have developed a neoadjuvant INF-γ signature, based on the signature previously described by Ayers et al., that will be used for the first time to classify pts in this prospective trial.

Trial design: This two-center investigator-initiated phase 1b study aims to assess the safety and feasibility of neoadjuvant NIVO ± DOM ± IPI in 45 stage III melanoma pts with macroscopic de-novo or recurrent disease. INF-γ signature high pts were more likely to respond to IPI plus NIVO. The DONIMI study tests the combination of NIVO ± IPI combined with a class 1 histone deacetylase inhibitor, domatinostat (DOM), according to the pts IFN-γ signature. We have developed a neoadjuvant INF-γ signature, based on the signature previously described by Ayers et al., that will be used for the first time to classify pts in this prospective trial.

Clinical trial information: NCT04133948


P01.15 PERSONALIZED COMBINATION OF NEOADJUVANT DOMATINOSTAT, NIVOLUMAB (NIVO) AND IPILIMUMAB (IPI) IN MACROSCOPIC STAGE III MELANOMA PATIENTS STRATIFIED ACCORDING TO INTERFERON-GAMMA (INF-GAMMA) SIGNATURE – THE DONIMI STUDY

Background: The recent OpACIN and OpACIN-neo studies investigating neoadjuvant IPI plus NIVO have demonstrated high pathologic response rates (74–78%) and favorable long-term outcomes for patients (pts) with a pathologic response; at 36 and 18 months follow up only 1/71 (1.4%) responders has relapsed. In contrast, pathological non-responders have a poor prognosis; 15/23 (65.2%) have relapsed so far. This emphasizes the need for baseline biomarkers predictive of non-response and new neoadjuvant treatment combinations for these pts. In our previous studies, baseline IFN-γ signature high pts were more likely to respond to IPI plus NIVO. The DONIMI study tests the combination of NIVO ± IPI combined with a class 1 histone deacetylase inhibitor, domatinostat (DOM), according to the pts IFN-γ signature. We have developed a neoadjuvant INF-γ signature, based on the signature previously described by Ayers et al., that will be used for the first time to classify pts in this prospective trial.

Trial design: This two-center investigator-initiated phase 1b study aims to assess the safety and feasibility of neoadjuvant NIVO ± DOM ± IPI in 45 stage III melanoma pts with macroscopic de-novo or recurrent disease. INF-γ signature high pts were more likely to respond to IPI plus NIVO. The DONIMI study tests the combination of NIVO ± IPI combined with a class 1 histone deacetylase inhibitor, domatinostat (DOM), according to the pts IFN-γ signature. We have developed a neoadjuvant INF-γ signature, based on the signature previously described by Ayers et al., that will be used for the first time to classify pts in this prospective trial.

Clinical trial information: NCT04133948