significant, strictly inducer-dependent antitumor activity in a well-established mouse model of B cell lymphoma.

Conclusions The zinc-finger-based transcriptional control system investigated in this study provides small molecule-inducible control over a therapeutically relevant anti-CD20 CAR in primary T cells in a time- and dose-dependent manner. The tight regulation of CAR expression will pave the way for safer cellular therapies.

Disclosure Information B. Kotter: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. N. Werczchau: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. W. Krueger: A. Employment (full or part-time); Significant; Lentigen Technology Inc. A. Roy: A. Employment (full or part-time); Significant; Lentigen Technology Inc. J. Mittelstaet: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. A. Kaiser: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG.

P01.24

THE SELECTIVE HDAC6 INHIBITOR ITF3756 INCREASES THE DIFFERENTIATION TO CENTRAL MEMORY T CELLS WITH REDUCED EXHAUSTION PHENOTYPE

C Ripamonti, C Steinkühler, G Fossati*. Italfarmaco SpA, Cinisello Balsamo, Italy

10.1136/jitc-2020-ITOC7.36

Background Central memory T cells show superior persistence and antitumor immunity compared to effector memory and effector T cells. T effector cells respond quickly to tumors, but they are terminally differentiated and undergo apoptosis upon killing activity. T memory differentiate rapidly into T effector cells and maintain a pool of cells that can continuously differentiate thus sustaining a more lasting response. In adoptive cell therapy (ACT), T cells infused into patients may have a limited time of activity if they are terminally differentiated, and may rapidly undergo exhaustion and apoptosis. The development of new strategies based on novel agents able to generate memory T cells ex-vivo is important for a successful clinical application of ACT. We have studied the effect of a potent and selective HDAC6 inhibitor, ITF3756, on CD8 T cells differentiation during an *in vitro* induced exhaustion process.

Materials and Methods To induce exhaustion purified human CD8+ cells were stimulated twice with anti-CD3/CD28 beads (1:2) during 5 days, with or without ITF3756 1μM or 2μM added at all times of stimulation. At day 3 and 5 the expression of exhaustion, memory and effector T cells markers were analyzed by flow cytometry. Cells were also collected at day 5 for genes expression analysis. Expression of exhaustion, T phenotype, metabolic pathway and inflammatory cytokines were investigated by qPCR. Paired two-tailed t-tests was used to determine statistical significance between control versus treatment group at day 3 and 5 in 10 different donors. P-values ≤ 0.05 were considered significant.

Results ITF3756 1μM increased significantly the T central memory phenotype (CD45RO+CD62L+CCR7+) and decreased significantly the T effector phenotype (CD45RO+CD62L-CCR7-). The expression of CD62L in T central memory cells was significantly increased in agreement with the high expression of this marker in naïve and memory T cells. ITF3756 treatment decreased significantly the expression of...