principally distributed around the fat. We also observed an increase of proliferating ASC expressing lymphatic marker in fat explants treated with ascites. In a clinical trial of patients treated with Bevacizumab, we see a decrease of the lymphatic vessels. This decrease is linked with a decrease in the number of Inflammatory cells. These results together show that the fat tissue can play an important role in the lymphangiogenesis in the ovarian carcinoma. Furthermore, in the dissemination of metastasis through the body. We will next investigate the mechanisms underlying this phenomenon and try to understand all factors implicated in this process.

ABSTRACT WITHDRAWN

P03.09

ABSTRACT WITHDRAWN

P03.10

PREVALENCE AND PROGNOSTIC ROLE OF FOXP3+REGULATORY T LYMPHOCYTES IN CANCER. A TISSUE MICROARRAY STUDY ON >20'000 CANCERS

T Mandelkow*, E Bady, NC Blessin, C Hube-Magg, R Simon, G Sauter, C Fraune, M Lennartz, K Möller, SA Weidemann, AM Luebke, D Höflmayer, F Büscheck. University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Background Regulatory FoxP3+ lymphocytes function as suppressors of T-cell activity. The clinical impact of high FoxP3+ cell density in cancers is not fully understood, as some studies have linked high FoxP3+ cell density to good prognosis and others to poor prognosis in tumor cohorts with associated clinical data. While some data suggest that these variable data are due to biological differences between tumor entities, it is also possible that methodological differences have caused these discrepancies. This study was undertaken to analyze the density of FoxP3+ cells in various different cancer types by employing standardized methods.

Materials and Methods Tissue microarrays and large sections made from >20,000 prostate, breast, colorectal, ovarian, pancreatic, bladder and stomach cancers were analyzed together with various normal and inflamed tissues by conventional brightfield FoxP3 immunohistochemistry. Samples were also analyzed by fluorescent multiplex immunohistochemistry to assess the fraction of Ki67+ FoxP3+ cells. Results Our results indeed suggested a variable role of FoxP3+ cells in different tumor types. High FoxP3+ density was linked to high Gleason grade (p=0.0003) and early biochemical recurrence (p<0.0001) in 16923 prostate cancers, but to low tumor stage (p=0.027) and prolonged survival (p=0.0029) in 1341 breast cancers, and to low tumor stage (p<0.0001) in 744 colorectal cancers. No significant associations were found to tumor phenotype in 549 ovarian, 574 pancreatic, 549 bladder and 346 stomach cancers. Multiplex fluorescence IHC analysis of FoxP3 and Ki67 revealed comparable fractions of proliferating FoxP3+ cells in healthy tissues (average 12.3%, range 5.8–18.5%) and inflammatory conditions (average 7.6%, range 2.6–17.2%). Interestingly, the rate of Ki67+FoxP3+ cells was markedly higher in 36 bladder cancers (average 14.2%, range 0–49.3%) suggesting active expansion of FoxP3+ cells in cancer.

Conclusions Our data demonstrate an inverse prognostic impact of the FoxP3+ cell density in prostate and breast cancers. The increased proliferation rate of immune-regulatory FoxP3+ cells in some bladder cancer is interesting in the light of the variable response of these tumors to immune checkpoint inhibitors.

P03.11

EXPLORING TUMOR-INTRINSIC FACTORS REGULATING THE RECRUITMENT OF MYELOID-DERIVED SUPPRESSOR CELLS (MDSC) IN PANCREATIC DUCTAL ADENOCARCINOMA

1C Rambuschek*, 1P Metzger, 1C Hörth, 2R Hennel, 1⁄5 Bäthel, 1⁄6 Falconatà, 2⁄7 Rauber, 1⁄5 Endres, 1⁄5 Saur, 1⁄5 Schnurr, 1⁄5 M König. 1Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, University Hospital, LMU, Munich, Germany; 2Department of Radiation Oncology, University Hospital, LMU, Munich, Germany; 3Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany

Background Pancreatic Ductal Adenocarcinoma (PDAC) has very poor 5-year overall survival rate. Despite the encouraging effect of immunotherapy in other cancer types, clinical benefit in PDAC patients remains limited. One of the reasons for the lack of success is the immunosuppressive tumor microenvironment (TME), which is maintained by myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages. High MDSC infiltration is associated with a poor survival in PDAC patients. Our project aims at identifying tumor-driven chemokines that influence recruitment of MDSC and establishment of the immunosuppressive tumor microenvironment.

Materials and Methods 45 PDAC cell lines generated from spontaneous tumors of genetically-modified mice harboring the characteristic driver mutations KrasG12D or PIK3CAH1047R were analyzed for their expression levels of CXCL1, CCL2, G-CSF and GM-CSF by qRT-PCR. In order to study the relationship between the chemokine/cytokine profile and the immune cell infiltration, selected tumor cell lines were implanted orthotopically in C57BL6 mice. Three weeks after inoculation blood, spleen and tumor were isolated and organ specific immune cell infiltration analyzed in a multiplex assay. The chemokine levels were correlated with migratory capacity of splenic MDSC measured in an ex vivo chemotaxis assay.

Results CXCL1 significantly enhanced migration of polymor-phonuclear MDSC (PMN-MDSC) in vitro, while migration of monocyteic MDSC (M-MDSC) was predominantly skewed towards CCL2. Three weeks after tumor inoculation, MDSC populations in blood and spleen were expanded. Most intriguingly, PDAC cell lines with high CXCL1 or CCL2 levels in vitro showed significantly enriched intratumoral accumulation of PMN-MDSC and M-MDSC, respectively, suggesting that tumor-intrinsic chemokine secretion and not factors from the tumor stroma determined MDSC infiltration. The ex vivo chemotaxis assays revealed additional factors that modulate migration of MDSC into the TME.