the reason why the results of experimental studies are not suitable for biomedical research. The goal of our work was to evaluate the immunogenic properties of two murine cancer models - Lewis lung carcinoma LLC1 and glioma GL261 and to select two immunologically different tumor models for further chemo-immunotherapy research.

Materials and Methods Firstly, the immunological properties of GL261 and LLC1 cells were assessed in vitro. For this reason, expression of MHC I, PD-L1 and CD44 on LLC1 and GL261 cells surface was evaluated. Then the ability of GL261 and LLC1 lysates to activate immature murine dendritic cells (DCs) was estimated. Murine DCs were generated from bone marrow cells by cultivating them with GM-CSF over 6 days and then maturing them for 24 hours with IL-10 and GL261 lysate supplemented with E. coli lipopolysaccharide. Activation status of DCs was assessed by the expression of surface markers CD11c, MHC II, CD86, CD80, CD40 and CCR7. Later C57BL/6 mice were inoculated s.c. into the left side of the back with GL261 or LLC1 cells. Tumor development was monitored every 2–3 days and then tumors reached a size of ~1.5 cm3 mice were sacrificed. Tumors were collected for evaluation of immune cell infiltration and predominant cytokine profile. Also inactivated GL261 and LLC1 cells were inoculated prophylactically before tumor inoculation and their ability to induce antitumor immune memory was investigated.

Results Our study revealed different immunogenic properties of LLC1 and GL261 cells. LLC1 tumors developed significantly faster than GL261 tumors. Infiltration of immune cells, especially CD8+ lymphocytes and NK cells, was more prominent in GL261 than in LLC1 tumors. Also MHC I and PD-L1 expression was significantly higher on GL261 cells. They also showed better ability to induce antitumor immune memory and to activate murine dendritic cells. Cytokine profile analysis further confirmed immunological differences between LLC1 and GL261 cells.

Conclusions LLC1 and GL261 tumors possess different immunogenic properties - GL261 tumor reflects immunogenic tumor model while LLC1 tumor - nonimmunogenic model. These results confirm our idea that the immune subtype of tumour should be taken into account when evaluating the results of various combinations of chemo-immunotherapies.

REFERENCES

Disclosure Information K. Zilionyte: None. A. Mlynska: None. V. Pasukoniene: None.

P03.20 A MURINE, MYC-DRIVEN LYMPHOMA MODEL EXPRESSING HUMAN CD22 ENABLES TESTING OF TARGETED THERAPIES AND THEIR EFFECTS ON TUMOR IMMUNE MICROENVIRONMENT

F Gsottberger, C Brandl, S Petkovic, L Nitschke, A Mackensen, F Müller. University Hospital of Erlangen, Erlangen, Germany, University of Erlangen, Erlangen, Germany

Background The tumor microenvironment (TME) is composed of various cell types which closely interact via cell cell contacts and cytokines leading to tumor promotion, immune cell inhibition and drug resistance. TME is increasingly recognized for its role in cancer immunotherapies. In B-cell malignancies, myeloid cells play a central role in supporting tumor growth and immune suppression (Roussel et al., 2017, Cancer Immunol Immunother). Despite the importance of a syngeneic TME, preclinical studies with novel drugs have mainly been performed in models lacking a functional immune system. Therefore, we developed an immune competent murine lymphoma model transgenic to human CD22 to study effects of targeted therapies on TME.

Materials and Methods A chimeric CD22 consisting of human extracellular and murine intracellular CD22 (h/mCD22) was introduced in BL6 mice (BL6h/mCD22). Crossbreeding with BL6-myC lead to spontaneous development of murine lymphoma that were serially transplanted. Tumor infiltration and TME was characterized by flow cytometry. Mice were treated with Moxetumomab pasudotox, a CD22 targeted immuno-toxin and Doxorubicin.

Results Spontaneously developed tumors in lymphoid organs from BL6h/mCD22 x λ-myC consist of a monomorphic population of h/mCD22+ murine B cells. Three primary lymphoma subclones were isolated from distinct mice and serially transplanted in syngeneic mice. Stable tumor growth was established after subcutaneous (sc) and intravenous (iv) injection. However, TME of sc tumors was infiltrated by less than 1% immune cells, while myc-driven lymphoma in humans usually show substantial immune infiltration. In contrast to sc tumors, systemically growing lymphoma in murine bone marrow (BM) are infiltrated by 30% myeloid cells and 1% T-cells and in murine spleen by 10% and 30%, respectively. Myeloid cells found in these tumors were shown to suppress T cell proliferation in vitro. To test functionality of the h/mCD22 transgene, lymphoma-bearing mice were treated with Moxetumomab, which reduced BM lymphoma infiltration by 20 to 100-fold and infiltration in spleen by 5 to 20-fold in the three lymphoma models. Effects of treatment on TME were analyzed after treatment with Doxorubicin which is known to activate myeloid cells in vivo. Compared to untreated controls, Doxorubicin increased CD11b+ cells in spleen by 1.5-fold. Among these cells, Ly6G+ granulocytic cells increased most substantially.

Conclusions We established primary, myc-driven h/mCD22+ B-cell lymphoma which stably engraft in syngeneic mice with a TME mimicking myc-driven lymphoma in men. The model responds well to CD22-targeted therapy and Doxorubicin induces expected immunologic changes. Therefore, our unique model provides a platform to test CD22-targeting treatment strategies in an immune competent background.

Disclosure Information F. Gsottberger: None. C. Brandl: None. S. Petkovic: None. L. Nitschke: None. A. Mackensen: None. F. Müller: None.

P03.21 PROJECTING T CELLS INTO A REFERENCE TRANSCRIPTOMIC ATLAS TO INTERPRET ANTITUMOR IMMUNE RESPONSES

M Andreaat, SJ Carmona*. Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland

Background Single-cell transcriptomics is a transformative technology to explore heterogeneous cell populations such as T cells, one of our most potent weapons against cancer and viral