Conclusions eCHP-1 represents a easy accessible protein for diagnosis and targeting in very aggressive cancers.

Disclosure Information L. Secli: None. F. Fusella: None. M. Brancaccio: None.

IMMUNOPROFILING OF ORAL AND OROPHARYNGEAL TUMORS OF DIFFERENT ETIOLOGY

1B Pokryvkova*, 1M Grega, 2J Klozar, 1O Vencalek, 1J Nunvar, 1R Tachezy. 1Charles University, Faculty of Science, BIOCEV, Vestec, Czech Republic; 2Charles University, Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Prague, Czech Republic; 3Charles University, University Hospital Motol, Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Prague, Czech Republic; 4Faculty of Science of the Palacky University in Olomouc, Department of Mathematical Analysis and Applications of Mathematics, Olomouc, Czech Republic

Background Head and neck carcinomas (HNC) are the world’s sixth most common cancer. Most of HNCs are associated with tobacco and other environmental factors but a growing part of oropharyngeal tumors are caused by persistent infection of human papillomavirus (HPV). Patients with HPV positive cancers have a better prognosis with fewer recurrences. This may be caused by different anti-tumor immune response and immune profile of patients. Multiplexed fluorescent immunohistochemistry (fIHC) is a powerful tool for a detailed analysis of the tumor microenvironment. This method allows to access the phenotype and calculate cells in tumor parenchyma and stroma of the tumor since in comparison to flow cytometry, an architecture of the tissue remains preserved. fIHC is uniquely suited to study interaction of immune and cancer cells in situ.

Materials and Methods Number of 97 formalin fixed paraffin-embedded slides of the human HNC tissue with known etiology were examined using 4 different panels of 5 antibodies each. These panels include antibodies suitable for phenotyping of immune cells (CD3e, CD4, CD8, FOXP3) or their functional description (PD1, CTLA4, ICOS, CCR4). Additionally, antibodies against Ki67, VEGF and cell cytokeratin were used. Slides were stained using Opal™ 7-Color Fluorescent IHC Kit (Akoya Biosciences). The quantity of immune cells was evaluated in stroma and tumor compartment using InForm™ 2.4.6. software (Akoya Biosciences). For all patients the demographic and clinical data were available and these patients were followed for up to 18 years.

Results Our results have shown significantly higher abundance of Th and Tc in both compartments of HPV+ samples. Besides HPV etiology Th and Tc in the tumor microenvironment predict independently better survival of patients. We did not observed difference in number of Tregs (characterized as a CD3+CD4+FOXp3+ cells) in tumors of different etiology, but we detected higher number of ICOS+Tregs in stroma of HPV- tumors. We also quantified the subpopulations of Th and Tc expressing regulatory receptors PD1 and CTLA4. PD1 showed significantly higher expression on Th and Tc both in tumor and stroma of HPV+ tumors, but CTLA4 expression was significantly higher only on Th located in stroma of HPV- tumors. Moreover, we detected significantly higher VEGF expression in both compartments and higher proliferating activity of tumor cells in HPV- tumors.

Conclusions Detailed analyses of the tumor infiltrating lymphocytes allows for selection of prognostic markers in HNC of different etiology. Our results may also help to understand the better prognosis of HPV+ patients. More detailed survival analyses with inclusion of other clinical and demographic data will be presented.


ROLE OF NOX2 FOR HYPOXIA-INDUCED CHEMORESISTANCE IN ACUTE MYELOID LEUKEMIA

S Paul*, H Grauers Wiktorin, R Kiffin, K Hellstrand, A Martner. TMM Laboratory, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Background Relapse of acute myeloid leukemia (AML) may arise from residual chemoresistant leukemic cells. A hypoxic tumor microenvironment, such as the bone marrow, is known to enhance chemoresistance in various forms of cancer, including AML. Hypoxia inducible factor 1 alpha (HIF-1α) is an important mediator of cellular adaptation to hypoxia. HIF-1α is a constitutively expressed transcription factor that is rapidly degraded under normoxic conditions after hydroxylation by oxygen sensors, such as the HIF prolyl hydroxylases (PHDs). However, under hypoxic conditions the oxygen sensors lose the ability to induce the degradation of HIF-1α resulting in its stabilization and translocation to the nucleus where it induces the transcription of genes associated with glucose metabolism, angiogenesis, and cell survival. This may result in proliferation of malignant cells, impaired tumor cell differentiation and chemoresistance. Reactive oxygen species (ROS) have been shown to inhibit PHDs and may thereby stabilize HIF-1α, and may thus contribute to chemoresistance. AML cells may generate ROS via the myeloid NADPH oxidase NOX2. We therefore hypothesized that NOX inhibitors would decrease chemoresistance in a hypoxic environment.

Materials and Methods The wild type (WT) AML cell line PLB-985 and its NOX2 knocked out (KO) counterpart were cultured for five days in hypoxia (1% oxygen) or normoxia (21% oxygen) in the presence or absence of the NOX inhibitors histamine dihydrochloride (HDC), diphenyleneiodonium (DPI) and GSK2795039. Thereafter cells were exposed to the chemotherapeutic agent daunorubicin for 48 hours (in hypoxia or normoxia) and cell death was determined using the XTT assay. Stabilization of HIF-1α was measured either by western blot or flow cytometry. Differentiation of cells was quantified by measuring the expression of CD14 and CD11b by flow cytometry. Differentiation of cells was quantified by measuring the expression of CD14 and CD11b by flow cytometry.

Results Hypoxia reduced the sensitivity of WT PLB-985 cells to daunorubicin induced cell death (P < 0.05, n=4) whereas NOX2 KO cells were equally sensitive to daunorubicin in hypoxia and normoxia (P > 0.5, n=4). Furthermore, NOX2 KO AML cells displayed increased sensitivity to daunorubicin induced killing compared with PLB WT cells in a hypoxic environment (P < 0.05, n=4). Preliminary results show that pharmacological NOX inhibition using DPI enhanced the sensitivity of WT AML cells to daunorubicin induced killing. These results suggest that functional NOX2 contributes to chemoresistance in a hypoxic environment. As expected, hypoxia stabilized the expression of HIF-1α in AML cells. Preliminary results suggest that HIF-1α expression was reduced in the presence of NOX inhibitors.