Background Virus-based vaccines and appropriate costimulation potently enhance antigen-specific T cell immunity against cancer. In the present study, we exploit both innate and adaptive immune responses triggered by a novel recombinant modified vaccinia virus Ankara (rMVA) encoding a Tumor-Associated Antigen (TAA) and the costimulatory CD40L against solid tumors in combination regimes to overcome tumor-induced resistance to immunotherapy.

Material and Methods Subcutaneous murine tumors were induced in C57BL/6 or Balb/c mice using syngeneic tumor cell lines. When tumors were established (60–80 mm³) mice were intravenously injected with rMVA-CD40L. Tumor growth monitoring and immune cell analysis was performed.

Results Therapeutic treatment with rMVA-CD40L resulted in the control of established tumors in several independent tumor models. This antitumor effect was based on the generation of non-exhausted, systemic tumor-specific cytotoxic CD8+ T cells that was essential for therapeutic efficacy. Strikingly, rMVA-CD40L also induced strong NK cell activation and enhanced cytoxicity. Moreover, the combination of rMVA-CD40L and tumor targeting antibodies resulted in increased therapeutic antitumor efficacy. This therapeutic combination relied on Fcγ receptor-expressing immune cells as well as on NK cells.

Conclusion We describe a novel and translationally relevant therapeutic synergy between viral vaccination and CD40L costimulation. We show strengthened antitumor immune responses when both rMVA-CD40L-induced innate and adaptive immune mechanisms are exploited by combining immunotherapeutic regimes, such as TAA targeting antibodies. This finding could have a direct positive impact in therapeutic regimes where TAA targeting antibodies could be employed.

Disclosure Information M. Hinterberger: A. Employment (full or part-time); Significant; Bavarian Nordic. J. Medina-Echeverz: A. Employment (full or part-time); Significant; Bavarian Nordic. M. Testori: A. Employment (full or part-time); Significant; Bavarian Nordic. M. Geiger: A. Employment (full or part-time); Significant; Bavarian Nordic. R. Giessel: A. Employment (full or part-time); Significant; Bavarian Nordic. B. Bathke: A. Employment (full or part-time); Significant; Bavarian Nordic. R. Kassub: A. Employment (full or part-time); Significant; Bavarian Nordic. F. Gräbñitz: A. Employment (full or part-time); Significant; Bavarian Nordic. G. Fiore: A. Employment (full or part-time); Significant; Bavarian Nordic. P. Chaplin: A. Employment (full or part-time); Significant; Bavarian Nordic. P. Chaplin: A. Employment (full or part-time); Significant; Bavarian Nordic. R. Hochrein: A. Employment (full or part-time); Significant; Bavarian Nordic. H. Lauterbach: A. Employment (full or part-time); Significant; Bavarian Nordic.
MULTIFUNCTIONAL ANTIBODY CONSTRUCT FOR IN VIVO TARGETING OF DENDRITIC CELLS AS A THERAPEUTIC VACCINATION STRATEGY IN AML

1S Schmitt*, 2,3A Lohner, 2,3K Deiser, 2A Maiser, 2,3M Rothe, 2,3C Augsberger, 1A Moosmann, 4H Leonhardt, 5N Fenn, 6M Griffioen, 2,3,7M Subklewe. 1Department of Biochemistry, Gene Center of the LMU Munich, Munich, Germany; 2Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; 3Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany; 4Department of Biology II, Center for Integrated Protein Science Munich, Munich, Germany; 5Research Unit Gene Vectors, Haematologikum, Helmholtz Center Munich, Munich, Germany; 6German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany

Background Dendritic cells (DCs) are antigen-presenting cells that induce antigen-specific T-cell responses. Therefore, they are used as tools and targets for anti-tumor vaccination. In contrast to T-cell based immunotherapies, that are often limited to surface antigens, DC-based vaccination strategies open up new therapeutic options by utilizing highly abundant intracellular tumor antigens as a target source. Among those, recent interest has been focused on the identification of neo-antigens derived from tumor-specific mutations. Especially mutated Nucleophosmin 1 (NPM1) is a considered candidate for targeted therapy in acute myeloid leukemia (AML). We developed a multifunctional antibody construct consisting of a peptide domain including a variable T-cell epitope that is fused to an αCD40 single chain variable fragment (scFv) with agonistic function to target and activate dendritic cells in vivo. To potentiate therapeutic efficacy, toll-like receptor (TLR) agonists can be attached as co-stimulatory domains, thereby aiming to enhance cross-presentation of conjugated (neo)antigens to CD8+ T cells.

Materials and Methods Flow cytometry and microscopy-based binding and internalization experiments were performed using monocyte-derived dendritic cells (moDCs). Uprogelation of surface markers (CD80, CD83, CD86, HLA-DR) as well as cytokine secretion (IL-6 and IL-12) indicated DC maturation. To validate peptide processing and presentation, moDCs were co-cultured with autologous as well as allogeneic T cells. IFN-γ and TNF-α secretion served as a readout for T-cell activation, peptide-MHC multimer staining for T-cell proliferation.

References


RESULTS
For proof-of-principle experiments, the multispecific antibody derivative was developed by fusing the αCD40 scFv to a cytomegalovirus (CMV)-specific peptide. The αCD40.CMV construct bound CD40 agonistically and showed efficient internalization into early endosomal compartments on immature moDCs. In co-cultures of immature and mature moDCs with autologous or allogeneic T cells, αCD40.CMV induced a significantly increased T-cell activation and proliferation compared to the control. The co-administration of αCD40.CMV with various TLR agonists as vaccine adjuvants resulted in a significant upregulation of DC maturation markers in comparison to αCD40.CMV only. Interestingly, not all adjuvants were able to enhance the T-cell response. To translate this principle to the AML setting, the CMV peptide sequence was replaced with the NPM1-derived and HLA-A*02:01-binding neoantigen CLAVEEVSL. Cross-presentation to CD8+ T cells transduced with a NPM1-specific T-cell receptor was proven by IFN-γ and TNF-α secretion in co-cultures with moDCs that have been pre-incubated with αCD40.NPM1. The optimal vaccine adjuvant has yet to be identified.

CONCLUSIONS We successfully demonstrated the development of a multifunctional antibody construct that specifically targets and stimulates DCs by an agonistic αCD40 scFv. It simultaneously delivers a T-cell-specific peptide with a vaccine adjuvant to induce an efficient T-cell response. As neoantigens are promising targets and under intense investigation, the αCD40.NPM1 fusion protein is of high therapeutic interest. Thus, our approach displays a promising DC vaccination option for the treatment of AML.


MODULATING TUMOR MICROENVIRONMENT WITH ARGINASE-1 SPECIFIC T CELLS

1E Martinenaitė, 2M Aaboë Joergensen, 2RE Johansson Mortensen, 2S Munir Ahmad, 2SE Weiß-Banke, 2M Orebø Holmström, 1AW Pedersen, 1O Met, 1M Svane, 1M Hald Andersen, 1IO Biotech, Copenhagen, Denmark; 2National Center for Cancer Immunotherapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark

Background Cancer progression is associated with an increased immune suppression at the tumor site. Arginase-1 is an enzyme well-known for its involvement in metabolic immune regulation. At the tumor site, arginase-1 acts by reducing availability of L-arginine to the infiltrating immune cells thus reducing T cell functionality and proliferation. While arginase-1 is expressed by some tumor cells, it has also been shown to be produced by immune inhibitory myeloid cells, such as myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs) and is associated with poor prognosis. Previously, we demonstrated that spontaneous CD4+ and CD8+ T-cell immune responses against arginase-derived, HLA-restricted peptides can be found in both cancer patients and healthy individuals (Martinenaitė et al., 2018, DOI: 10.1080/2162402X.2017.1404215). These T cells are present in the memory T cell compartment, and that they are activated in arginase-1 inducing conditions.