Abstracts

until Day 19. Interferon gamma (IFN-γ) release in response to TIL co-culture with autologous tumour cultures was measured with a human IFN-γ ELISA kit. Data are presented as mean ±SEM.

Results Addition of checkpoint inhibitors at the initiation of HGSOC TIL culture in cohort 1 increased TIL expansion above untreated control in αPD-1 (1.20±0.04 fold, P<0.01, n=9) and αLAG-3 (1.31±0.08 fold, P<0.001, n=9) but not αTIM-3 treated cultures. However, intermittent dosing of HGSOC cultures in cohort 2 with either αPD-1, αTIM-3 or αLAG-3 antibodies did not increase TIL expansion above untreated cultures. In cohort 1, IFN-γ secretion was increased above untreated control in at least one culture treated with a checkpoint inhibitor in 5/7 patients. However, there was no overall fold change in IFN-γ secretion in either αPD-1, αTIM-3 or αLAG-3 treated cultures.

Conclusions This data suggests that initial blockade of checkpoint proteins is effective in increasing the ex vivo expansion of TIL from HGSOC tumours, thus providing a method of improving the efficacy of TIL products in ovarian cancer patients.

Funding GO was funded through a CRUK Manchester Centre Clinical Fellowship. PJ was in receipt of a bursary from the Emma Gyles Bursary Fund. The project was funded by TESARO Inc.


P06.11 IMMUNOTARGETING OF CD98HC FOR ELIMINATION OF RADIORESISTANT HEAD AND NECK SQUAMOUS CELL CARCINOMA

A.S. Köseer*, 1,2C Arndt, 1,2A Feldmann, 1,3,4A Linge, 1,3,4,6A Dubrovska, 1,3,4,6-N. Bachmann, 1National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; 2Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany; 3OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; 4German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany

10.1136/jitc-2020-ITOC7.90

Background Most patients with head and neck squamous cell carcinomas (HNSCC) are diagnosed during a locally advanced stage and may show therapy resistance. Retrospectively, we showed that low CD98hc mRNA and protein levels are significantly associated with better locoregional tumor control in HNSCC patients. Inhibition of CD98hc expression decreased tumor radioresistance suggesting that CD98hc could be a target for HNSCC radiosensitization. One of the strategies for radiosensitization is targeted immunotherapy. However, Chimeric Antigen Receptor (CAR)-equipped T-cell therapy cannot be fully controlled. Therefore, we developed a switchable UniCAR system that is in phase I clinical trial (NCT04230265) [3]. UniCAR T cell activity and specificity are controlled by the presence of target modules (TM) with short half-lives. We aim to define the clinical value of treatment approaches by combining radio(chemo)therapy with CD98hc-targeted immunotherapy.

Materials and Methods We have used previously described radioresistant Cal33 HNSCC cells. These tumor cells were cocultured with UniCAR T cells in the presence or absence of a novel CD98 TM. Specific cell lysis in both in vitro 2D and 3D cultures and tumor cell targeting in the experimental mice was assessed.

Results Our data shows that CD98-directed UniCAR T cells can induce cell lysis of radioresistant HNSCC cells in vitro and in vivo models. The combination of the UniCAR system with radio(chemo)therapy can be potentially used for the improvement of the treatment efficacy in patients with metastatic radioresistant tumors. The most promising combination of therapeutic approaches will be further tested in xenograft tumor models to evaluate the best performing combination of immunotherapy and radio(chemo)therapy.

Conclusions Overall, it was shown that tumors with radio-resistant properties can be eradicated via the UniCAR system by targeting CD98hc in an antigen-specific manner.

REFERENCES


Disclosure Information A.S. Köseer: None. C. Arndt: None. A. Feldmann: None. A. Linge: None. M. Krause: None. A. Dubrovska: None. M. Bachmann: E. Ownership Interest (stock, stock options, patent or other intellectual property); Significant; GEMoB.

P06.12 COMBINATION THERAPY OF CAR-NK-CELLS AND ANTI-PD-1 ANTIBODY RESULTS IN HIGH EFFICACY AGAINST ADVANCED-STAGE GLIOBLASTOMA IN A SYNGENIC MOUSE MODEL AND INDUCES PROTECTIVE ANTI-TUMOR IMMUNITY IN VIVO

1,3,5,7,8 Strassheimer, 1,2,3,5 Stecker, 4,2,3,5 Alekseeva, 5,2,3,5 Macas, 6,2,3 Demes, 1,3,5,7 Milderberger, 4,7 Torn, 6,2,3,5 Wild, 5,2,3,5 Seichen, 5,2,3,5 Reis, 5,2,3,5 Hartner, 5,2,3,5 Pla, 4,2,3,5 Welk, 5,2,3,5 Steinbach, 5,2,3,5 Burgner*. 1Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany; 2Frankfurt Cancer Institute (FCI), Frankfurt, Germany; 3German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany; 4Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany; 5Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany; 6Dr. Senckenberg Institute of Pathology, Goethe University Hospital, Frankfurt, Germany; 7Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; 8Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.

10.1136/jitc-2020-ITOC7.91

Background Checkpoint inhibitors as well as adoptive cell therapy hold great promise for cancer therapy and encouraging treatment responses have already been demonstrated in different cancer indications. Glioblastoma (GB) is the most common and aggressive primary brain tumor. Standard therapy has very limited efficacy in the majority of patients. Analysis of the GB tumor microenvironment (TME) has shown prominent immunosuppressive features including expression of PD-L1 on tumor cells and increased frequency of FOX-P3 positive regulatory T cells. While the surrounding brain is HER2-negative, GB tumors are frequently HER2-positive, suggesting HER2 as a promising target for adoptive immunotherapy.
A NOVEL LOCAL TREATMENT APPROACH? TARGETED IMMUNOTHERAPY OF GliOBLASTOMA VIA AAV-MEDIATED GENE TRANSFER OF CHECKPOINT INHIBITORS THROUGH LOCALLY ADMINISTERED HER2-AAVS IN COMBINATION WITH CAR-NK CELLS

1,2,3M. Strecker, 1,2,3F. Strassheimer, 1,2,3J. Reul, 1,2,3P. N. Harter, 1,2,3J. P. Steinbach, 1,2,3W. S. Wels, 1,2,3CJ. Buchholz, 1,2,3MC. Burger.* 1Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany; 2Frankfurt Cancer Institute (FCI), Frankfurt, Germany; 3German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany; 4Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany; 5Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany; 6Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany; 7Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.

Abstracts

P06.13

Glioblastoma (GB) is the most common primary brain tumor which is characterized by a low immunogenicity of tumor cells and a prevalent immunosuppression in the tumor microenvironment (TME). Since expression of PD-L1 on GB cells has been described, immunotherapy with checkpoint inhibitors (CIs) may be a promising approach for GB treatment. However, systemic administration of CIs bears the risk of autoimmune-like side effects. Delivery of CIs through targeted Adeno-associated viral vectors (AAVs) could overcome this problem. While the brain is HER2(ErbB2)-negative, GB are frequently HER2-positive. Accordingly, intratumoral administration of HER2-specific AAVs encoding CIs may represent a promising approach for GB immunotherapy. This approach will be further combined with local injection of HER2-specific CAR-NK cells (NK-92/5.28.z). The CAR-NK cells already demonstrated efficacy in preclinical GB models and are currently under investigation in the CAR2BRAIN phase I clinical trial. AAVs used in this project harbor a HER2-specific DARPin and encode a murine PD-1 inhibitor (aPD-1). Subcutaneous GL261-HER2 tumors were treated locally with HER2-AAVs either alone or in combination with HER2-specific NK-92/5.28.z cells, and tumor growth and survival were monitored. Subsequently, the efficacy of local application will be compared to systemic AAV administration in subcutaneous and orthotopic intracranial tumors. AAV distribution and specific tumor cell targeting will also be analyzed. Furthermore, future experiments will investigate the influence of AAVs on the TME and the immune cell composition of tumors. Transduction efficacy of HER2-AAVs in murine as well as human glioma cells in vitro correlates with the level of HER2 expression. Subsequently, aPD-1 is secreted in a time-dependent manner and binds its target on PD-1-expressing cells. Preliminary results suggest combined therapy with aPD-1-encoding HER2-AAVs and NK-92/5.28.z cells to mediate anti-tumor effects in vivo. Comparison of local and systemic administration of HER2-AAVs in subcutaneous and intracranial GL26-HER2 tumors is still subject of ongoing investigation, as well as analysis of tumor cell penetration by AAVs in vivo. Local therapy with HER2-AAV in combination with HER2-CAR NK cells is a promising novel strategy for GB immunotherapy with the potential to enhance efficacy and reduce side effects, potentially offering perspectives beyond brain tumor medicine.


P06.14

CHARACTERIZATION OF TUMOR-INFILTRATING T CELLS BY HIGHLY MULTIPLEXED IMMUNOFLUORESCENCE IMAGING


Background The adoptive cell transfer (ACT) of tumor-infiltrating T lymphocytes (TILs) has shown remarkable results in patients with different cancer types. The antitumor effect of this therapy is mainly attributed to a small fraction of tumor-reactive T lymphocytes (TRLs) that recognize mutated peptides as well as overexpressed self-antigens. Therefore, the enrichment and expansion of TRLs constitutes a promising immunotherapy approach. However, the specific targeting of individual mutated antigens represents a daunting challenge for widespread therapeutic application. Alternatively, we hypothesize that TRLs could be identified and enriched by a surface marker (or combination thereof) in an antigen-independent manner as a result of the chronic antigen exposure and other factors present in the tumor microenvironment (TME).