control antibody for 24 hrs in the histoculture system. RNA was isolated from tumors prior to any treatment as well as from JTX-8064 and isotype control treated samples. Gene expression was analyzed using the NanoString nCounter® and qPCR assays. Additional IHC analyses were performed on baseline untreated tumor samples.

Results JTX-8064 was shown to induce pharmacodynamic responses to treatment significantly above isotype control indicative of macrophage polarization, IFNγ-signaling, and T cell inflammation. To identify predictive biomarkers of pharmacodynamic response to JTX-8064, matched untreated samples were characterized by gene expression analysis and by IHC (CD8, CD163, and HLA-G proteins). Numerous LILRB2 pathway-related molecules (e.g., HLA-A, HLA-B, CD163, LILRB2) and gene signatures were found to be statistically significantly higher in the untreated kidney, head and neck, and lung cancer samples of matched pharmacodynamic responders compared to non-responders. Further bioinformatics analysis revealed additional cancer subtypes where these biomarkers are enriched.

Conclusions These data will inform indication selection and combination strategies for JTX-8064 to maximize potential therapeutic benefit for patients with solid tumor malignancies.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0217

![Abstracts](http://jitc.bmj.com/)

A PRECLINICAL STUDY OF IMC-002, A FULLY HUMAN THERAPEUTIC ANTIBODY SAFELY TARGETING CD47 IN CANCER

Hyeonseok Yoo*, Jeong Kook Kim, Ji Yea Choi, Sun Kwang Song, Jihyun Park, Ara Jeon, Ji Hye Lee, Sook Kyung Chang, Yun Song. ImmunOncia Therapeutics, Seongnam-si, Moldova, Republic of

Background Immunotherapy with immune checkpoint inhibitors such as PD-(L)1 and CTLA-4 blocker has become an important part of cancer treatment. For the cancers resistant to these drugs, however, many other therapeutic targets are being tested to modulate the tumor microenvironment (TME) toward anti-cancer immunity. Due to the functional flexibility, macrophages play an essential role in orchestrating tissue immunity including TME. CD47 is one of the key targets that modulate macrophages, which is often overexpressed on cancer cells. When it binds to its receptor, SIRPα, it gives a ‘don’t-eat-me’ signal and inhibits phagocytosis of cancer cells by macrophages. IMC-002 is a fully human IgG4 monoclonal antibody targeting human CD47, which has been engineered to minimize hematological toxicities such as anemia which is a class effect of the CD47-targeting antibodies. The first-in-human (FIH) study of IMC-002 is ongoing in the US sites. The purpose of the study is to assess the safety and tolerability of IMC-002 and determine the recommended Phase 2 dose (RP2D) of IMC-002 in subjects with metastatic or locally advanced solid tumors and relapsed or refractory lymphomas.

Ethics Approval All experimental procedures were performed according to the guidelines of the Institutional Animal Care and Use Committee (IACUC) of the contract research organizations.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0218

![Abstracts](http://jitc.bmj.com/)

LONG-TERM CLINICAL OUTCOMES ASSOCIATED WITH SEQUENTIAL TREATMENT OF BRAF MUTANT ADVANCED MELANOMA PATIENTS

Ahmad Tarhini*, David McDermott, Apoorva Ambavane, Agnes Benedict, Cho-Han Lee, Corey Ritches, Brian Stwalley, Meredith Ragan, Michael Atkins. Moffitt Comprehensive Cancer Center and Research Institute, Tampa, FL, USA; 4Harvard Medical School; Beth Israel Deaconess Medical Center, Boston, MA, USA; 5Evidera, London, MD, UK; 6Bristol Myers Squibb, Princeton, NJ, USA; 7Harvard Medical School and Dana-Farber Cancer Institute, Boston, MA, USA; 8Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA

Background Patients with BRAF mutant advanced melanoma can be treated sequentially with immunotherapies (IO) and BRAF+MEK inhibitors. We evaluated the clinical outcomes associated with various treatment sequences for BRAF mutant advanced melanoma based on the 5-year follow-up data from clinical trials.

Methods In the absence of head-to-head trial data, a matching-adjusted indirect comparison (MAIC) was conducted for IO vs. BRAF+MEK inhibitors, using the longest follow-up available in the published literature. Multivariate risk models...