were developed to predict time-to-event outcomes based on patient-level data from pooled CheckMate-067 &-069 trials. Risk equations were inserted into a discrete event simulation to estimate the average life-years (LYs) and quality-adjusted life-years (QALYs) that can be gained with various treatment sequences over a lifetime horizon. Treatment sequences and corresponding efficacy data sources are presented below (Table 1). Utility weights for quality-adjustment of LYs were obtained from published literature.

Results

Treatment sequences starting with IO followed by BRAF+MEK were associated with 2.9–4.3 years of additional survival and 2.2–3.3 years of quality-adjusted survival versus sequences starting with BRAF+MEK followed by anti-PD-1. After 1L IO, the time spent in the treatment-free interval (TFI) is 3.3–5.0 years. LYs, QALYs, and time spent in TFI were higher with sequences starting with anti-PD-1+anti-CTLA-4 vs. anti-PD-1 alone.

Conclusions

In this sequencing model with 5-year data from randomized clinical trials, initiating 1L treatment with IO provided prolonged survival compared to initiating 1L treatment with BRAF+MEK. Time spent in TFI represents a significant proportion of survival time for patients on IO initiating sequences. Limitations of the study are the reliance on published information for BRAF+MEK, which could lead to biases due to unmeasured differences in the patient populations or trial conduct and the absence of data on 2L combinations. Limitations of the study are the reliance on published information for BRAF+MEK, which could lead to biases due to unmeasured differences in the patient populations or trial conduct and the absence of data on 2L combinations. Limitations of the study are the reliance on published information for BRAF+MEK, which could lead to biases due to unmeasured differences in the patient populations or trial conduct and the absence of data on 2L combinations. Limitations of the study are the reliance on published information for BRAF+MEK, which could lead to biases due to unmeasured differences in the patient populations or trial conduct and the absence of data on 2L combinations.

References

Ethics Approval

The study was approved by US Oncology Inc’s Institutional Review Board, approval number 20-020E-2020-0224-01.

POOR PERFORMANCE STATUS NEGATIVELY AFFECTS SURVIVAL BENEFIT OF IMMUNOTHERAPY IN NON-SMALL CELL LUNG CANCER

Hameen Kasvur*, Pramod Gaudel, Nahid Saleman, Mohammed Al-Junayyi, Chao Huang, Prakash Neupane. University of Kansas Medical Center, Westwood, KS, USA

Background

Immunotherapy has shown survival benefit as both frontline and subsequent therapy in multiple cancers. However, its efficacy in patients with poor performance status is unknown since they are excluded from the clinical trials. We conducted a retrospective study to investigate the effect of poor performance status (PS) on survival in patients with non-small cell lung cancer (NSCLC) who received immunotherapy as a subsequent line of treatment.

References