Conclusions

The impact of TMB may vary across PD-L1 expression subgroups. Rational integration of TMB and PD-L1 expression may identify NSCLCs with the greatest likelihood of response or resistance to ICIs.

Ethics Approval

Clinicopathologic data were collected from patients with advanced NSCLC who had consented to a correlative research study (DF/HCC protocol #02-180).

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0246

Abstract 248

248 IMMUNOTHERAPY PERSISTER CELLS UNCOVERED BY DYNAMIC SINGLE-CELL RNA-SEQUENCING

1Kartik Sehgal*, 1Andrew Portell, 1Elena Ivanova, 2Patrick Lizotte, 1Navin Mahadevan, 3Jonathan Greene, 4Amir Vadji, 5Carino Gurjao, 1Tyler Teceno, 1Luke Taus, 1Tran Thai, 1Shunsuke Kitajima, 1Derek Liu, 1Tetsuo Tani, 1Moataz Noureddine, 1Christie Lau, 1Paul Kirschmeier, 1David Liu, 1Marios Giannakis, 2Russell Jenkins, 6Prafulla Gokhale, 6Silvia Goldoni, 6Maria Pinzon-Ortiz, 4William Hastings, 4Peter Hammerman, 1Juan Miret, 1Cloud Paweletz, 1David Barbie.

1Dana-Farber Cancer Institute, Boston, MA, USA; 2ACME Informatics LLC, Claremont, CA, USA; 3Massachusetts General Hospital Cancer Center, Boston, MA, USA; 4Novartis Institute for Biomedical Research, Cambridge, MA, USA

Background

To understand fundamental mechanisms of immune escape, we leveraged our functional ex vivo platform of murine derived organotypic tumor spheroids (DOTS)1 to determine if drug-tolerant persister cells analogous to oncogene targeted therapies limit efficacy of programmed death (PD)-1 blockade, and to identify therapeutic vulnerabilities to overcome anti-PD-1 (αPD-1) resistance.

Methods

Murine syngeneic cancer models with well-characterized response to αPD-1 therapy were chosen: MC38 (sensitive) and CT26 (partially resistant). Bulk and single-cell (sc) RNA-sequencing (RNA-seq) were performed on αPD-1 treated DOTS. In vitro culture studies were conducted with or without cytokines (100 ng/ml) or drugs (500 nM). In vivo studies in mice bearing MC38 or CT26 tumors evaluated the combinational strategy with PD-1 blockade. We further evaluated our findings in scRNA-seq of an αPD-1 refractory colorectal cancer (CRC) patient tumor.2

Results

Bulk RNA-seq of αPD-1 treated DOTS revealed a mesenchymal resistant phenotype with upregulated TNF-α/NFκB signaling (figure 1). scRNA-seq further identified a discrete sub-population of immunotherapy persister cells (IPCs). These cells expressed a stem-like phenotype including downregulation of E2F targets indicative of quiescence, suppression of interferon-γ response genes, induction of hybrid epithelial-to-mesenchymal state, and active IL-6 signaling (figure 1). Ly6a/stem cell antigen-1 (Sca-1) and Snai1 were found to be differentially upregulated in IPCs resistant to αPD-1 blockade (not shown). Sca-1 positivity was confirmed in pre-existing tumor populations in vitro (figure 2). When enriched via sorting, these cells remained more persistently Sca-1+ at 96 hours in culture of CT26 compared to MC38 cells, related to increased autocrine IL-6 production by CT26 Sca-1+ cells. Indeed, IL-6 supplementation was capable of expanding Sca-1+ cells in culture (figure 2). Sca-1+ cells expressing ovalbumin peptide were refractory to OT-1 T cell mediated killing and failed to upregulate MHC class-1 antigen presentation (H-2Kb) in contrast to interferon-γ (not shown). Analysis of RNA-seq data further identified Birc2/3 as potential targets limiting TNF-mediated apoptosis of these cells (not shown). Notably, Birc2/3 antagonism depleted Sca-1+ IPCs in vitro and significantly potentiated the impact of PD-1 blockade in vivo in MC38, and less robustly in CT26 (figure 3). Evaluation in a microsatellite-instability high CRC patient identified a pre-existent IPC subpopulation within the αPD-1 refractory pre-treatment tumor, with high SNAI1 expression compared to CRC samples in TCGA (figure 4).

Abstract 248 Figure 1

Bulk and single-cell (sc) RNA-sequencing (RNA-seq) of DOTS identifies an anti-PD-1 (αPD-1) resistant subpopulation of persister cells. IgG= isotype control
Abstract 248 Figure 2 Pre-existent population of stem cell antigen-1 (Sca-1)+ cells expands in response to interleukin-6 (IL-6), as characterized by flow cytometry evaluation in murine syngeneic cancer models at baseline and after purification by fluorescence-activated cell sorting (FACS). H = hours

Abstract 248 Figure 3 Combination of anti-PD-1 therapy with Birc2/3 antagonism increases tumor responses and improves survival. CR = complete response

Abstract 248 Figure 4 Single-cell RNA-sequencing (scRNA-seq) of a pre-treatment microsatellite-instability (MSI-H) colorectal cancer (CRC) patient tumor, refractory to anti-PD-1 (αPD-1) therapy, reveals presence of SNAI1-high immunotherapy persister cells

Conclusions High-resolution functional ex vivo profiling identified Sca-1+/SnaI1^{high} stem-like ‘immunotherapy persister cells’ and uncovered their anti-apoptotic dependencies targetable with Birc2/3 antagonism to augment αPD-1 efficacy.