PFS in mTNBC. Here we present the correlative genomic and immunologic analyses from this study.

Methods This trial (https://clinicaltrials.gov/ct2/show/NCT02768701) recruited 40 patients with largely pretreated mTNBC. Response was defined as >30% decrease in imaging-assessed disease burden. Clinical benefit was defined as treatment response or stable disease. Tumor specimens were collected prior to enrollment, and peripheral blood mononuclear cell (PBMC) samples taken prior to cyclophosphamide and before each cycle of pembrolizumab. RNA sequencing was performed on tumor samples for gene expression and immune repertoire reconstruction. Targeted sequencing of the T-cell beta chain, IGG kappa, lambda and heavy chain (TRB, IGK, IGL, and IGH, respectively) on PBMCs captured the peripheral immune repertoire. Whole exome sequencing was performed on tumor samples with PBMCs serving as a matched normal.

Results Of 40 patients enrolled, 31 patients had tumor RNA-seq and at least 15 had matched PBMC-derived immune chains capturing both pre and post treatment. When preliminary RNA-seq samples (n=22) revealed upregulation in B-cell receptor pathways and related gene signatures (figure 1), we updated our planned analysis to exclude tumor specimens collected from lymph nodes. In our final analysis, response to therapy (4 of 25, 16%) was associated in tumor RNA-Seq with gene pathways involving programmed cell death and MAPK activation, while non-responding tumors were enriched in G-protein signaling and inhibition of insulin secretion (figure 2a,b; table 1). Immune gene signatures related to NK cells and B-cell activation, signaling and interaction with T follicular helper cells, were associated with response (figure 2c). Pre-treatment immune repertoire measures demonstrated a significant association between increased peripheral IGH abundance and richness, and both future clinical benefit and response to therapy (figure 3a-d).

Conclusions Response to CI therapy was associated with immunogenomic features of programmed cell death and B-cell activation. Pre-treatment circulating immunoglobulin diversity measures (high IGH abundance and IGH richness) also correlated with future response to therapy. Taken together, these data suggest that B-cell activity contributes significantly to response to CI therapy in mTNBC.

Acknowledgements UNC Office of Clinical and Translational Research (OCTR), High Throughput Sequencing Facility (HTSF), and UNC Bioinformatics Core. We also thank the patients in this study and their families, without whom this study would not have been possible.

Trial Registration Clinical Trials. gov: NCT02768701.

Ethics Approval All patients provided written informed consent, and the study was approved by each institution’s institutional review board (No. NCT02768701).

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0258

Abstract

PHASE IB/II OPEN-LABEL, RANDOMIZED EVALUATION OF ATEZOLIZUMAB (ATEZO) + SELICRELUMAB (SELI) + GEMCITABINE+NAB-PAACLITAXEL (GEM+NABP) OR BEVACIZUMAB (BEV) VS CONTROL IN MORPHEUS-PDAC, -TNBC AND -CRC

1Gulam Marji*, 2Nathan Bahary, 3Vincent Chung, 4Carlos Gomez-Roca, 6Seock-Ah Im, 7Jeremy Kortmansky, 7Jill Lacy, 8Neil Segal, 9Center Léon Bérard, Lyon, France; 10Roche Innovation Center Basel, Basel, Switzerland; 11Genentech, Inc., South San Francisco, CA, USA; 12F. Hoffmann-La Roche AG, Basel, Switzerland

Background The MORPHEUS platform comprises multiple randomized Phase Ib/II trials to identify early safety and efficacy signals for treatment combinations across cancers. Seli interacts with CD40 on antigen presenting cells, resulting in activation and priming of CD8 T-cells. Atezo (anti-PD-L1) + seli (CD40 agonist) was evaluated with gem+nabp for pancreatic ductal adenocarcinoma (PDAC), or with bev for triple-negative breast cancer (TNBC) and colorectal cancer (CRC).
Methods MORPHEUS-PDAC, MORPHEUS-TNBC and MORPHEUS-CRC enrolled 1L metastatic (m) PDAC, 2L locally advanced or mTNBC or 3L mCRC patients, respectively. Experimental arm patients received atezo (840 mg IV q2w) and seli (16 mg SC on D1 every 28-day cycle for C1-4 and every third cycle thereafter). Patients also received gem (1000 mg/m²) and nabP (1000 mg/m², 125 mg/m² respectively, IV on D1, 8, 15 every 28-day cycle) in PDAC or bev (10 mg/kg IV q2w) in TNBC and CRC. Control treatments were gem + nabP in PDAC, capetitabine in TNBC, and regorafenib in CRC. Primary endpoints were safety and objective response rate (ORR; investigator-assessed RECIST 1.1). PD-L1 and immune infiltration (p = 0.033). Independent of treatment, a higher tumor immune infiltration score,6 was associated with improved overall survival (p = 0.035). Bulk tumor immune-metabolic stress within the PDAC TME1. The metabolic stress within the PDAC TME promotes autophagy, a form of programmed cell survival associated with chemotherapeutic resistance and immune evasion.2,6

Methods We conducted a randomized phase II study of preoperative gemcitabine and nab-paclitaxel with or without autophagy inhibition with oral hydroxychloroquine (HCQ) in patients with resectable PDAC. Autophagy inhibition increased Evans Grade histopathologic response and immune infiltrate,6 Utilizing multiplex immunohistochemistry and dimer avoidance multiplex PCR-NGS5 in a subset of RNA extracted FFPE tumor specimens, we evaluated the adaptive immune response and immune correlates of response.

Results Patients receiving HCQ had a greater CD4/CD8 immune infiltration (p = 0.033). Independent of treatment, a higher tumor immune infiltration score,6 was associated with improved overall survival (p = 0.035). Bulk tumor immune-metabolic stress within the PDAC TME promotes autophagy, a form of programmed cell survival associated with chemotherapeutic resistance and immune evasion.2,6

Methods MORPHEUS-PDAC (20-week interim analysis): 9 patients received atezo+seli +gem+nabP and 4 received control. Treatment-related adverse events (TRAEs) were seen in all. Treatment-related serious AEs (SAEs) occurred in 6 patients (67%) receiving atezo+seli+gem+nabP and 1 (25%) receiving control. Confirmed ORRs: 44% (95%CI:14–79) and 25% (95%CI:6–81), respectively. MORPHEUS-TNBC (27-week interim analysis): 6 patients received atezo+seli+bev and 24 received control. TRAEs were seen in 5 patients (83%) receiving atezo+seli+bev and 18 (75%) receiving control. Treatment-related SAEs occurred in 1 patient in each arm (17% and 4%, respectively). Confirmed ORRs: 17% (95% CI:0.4–64) and 21% (95%CI:7–42), respectively. All 6 patients receiving atezo+seli+bev were PD-L1 negative (SP142 IHC assay) at baseline; the only patient with partial response (PR) showed upregulation of PD-L1 expression at week 3. MORPHEUS-CRC (18-week interim analysis): 6 patients received atezo+seli+bev and 13 received control. TRAEs were seen in all patients receiving atezo+seli+bev and 12 (92%) receiving control. Treatment-related SAEs occurred in 3 patients (50%) receiving atezo+seli+bev and 1 (8%) receiving control. No responses occurred in either study arm. Paired biopsies for 3 patients (60%) receiving atezo+seli+bev suggest on-treatment increases in CD8 T-cell infiltration into tumors.

Conclusions Toxicities related to the atezo+seli combinations were consistent with individual study treatments. Preliminary efficacy was observed for atezo+seli+gem+nabP in PDAC. Together with preliminary evidence of on-treatment pharmacodynamic effects in CRC and TNBC tumor samples, CD40 agonist strategies warrant further investigation.

Trial Registration MORPHEUS-PDAC: NCT03193190; MORPHEUS-TNBC: NCT03424005; MORPHEUS-CRC: NCT03555149.

Ethics Approval The trial was conducted according to the principles of the Declaration of Helsinki. All patients provided written informed consent. Protocol approval was obtained from an independent review boards or ethics committees at each site.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0259

260

T CELL INFILTRATING REPOTIDO DIVERSITY IS ASSOCIATED WITH ENHANCED SURVIVAL FOLLOWING NEOADJUVANT THERAPY IN PATIENTS WITH RESECTABLE PANCREATIC CANCER

Pranav Murthy*, Pragosh Saini, Kira Russell, Wenjing Pan, Daniel Weber, Miranda Byrne-Steele, Sian Han, Virginia Espina, Lance Lottia, Herbert Zeh III, Nathan Bahary, Aatur Singhi, Tulia Bruno, Amre Zureikat, Michael Lotze. University of Pittsburgh, Pittsburgh, PA, USA; 2HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA; 3George Mason University, Manassas, VA, USA; 4University of Texas Southwestern Medical Center, Dallas, TX, USA

Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy, characterized by a desmoplastic stromal reaction and an immunosuppressive tumor microenvironment (TME). The metabolic stress within the PDAC TME promotes autophagy, a form of programmed cell survival associated with chemotherapeutic resistance and immune evasion.6

Methods We conducted a randomized phase II study of preoperative gemcitabine and nab-paclitaxel with or without autophagy inhibition with oral hydroxychloroquine (HCQ) in patients with resectable PDAC. Autophagy inhibition increased Evans Grade histopathologic response and immune infiltrate.6 Utilizing multiplex immunohistochemistry and dimer avoidance multiplex PCR-NGS5 in a subset of RNA extracted FFPE tumor specimens, we evaluated the adaptive immune response and immune correlates of response.

Results Patients receiving HCQ had a greater CD4/CD8 immune infiltration (p = 0.033). Independent of treatment, a higher tumor immune infiltration score,6 was associated with improved overall survival (p = 0.035). Bulk tumor immunose-