Abstracts

Consent Patients provided written consent to perform evaluations here described.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0269

271 CONSISTENT HIGH-QUALITY DENDRITIC CELL VACCINES PRODUCED POST-CHEMOTHERAPY IN PATIENTS WITH ACUTE MYELOID LEUKEMIA FOR USE IN A PHASE III TRIAL

1Frauke Schnorfeil, 2Christiane Geiger, 3Iris Bigalke, 4Dag Josefse, 5Yngvar Flotland, 6Gunnar Kvalheim, 7Dorothea Schendel, 8Anna Tafuri, 9Kai Pinkenbelt; 1Medigene Immunotherapies GmbH, Martinried, Germany; 2Oslo University Hospital, Oslo, Norway; 3Medigene AG, Planegg-Martinsried, Germany

Background A Phase III dendritic cell (DC) vaccine trial was completed in 20 patients with acute myeloid leukemia (AML) in complete remission or CRi after chemotherapy who were ineligible for hematopoietic stem cell transplantation (NCT02405338). The DC vaccines were designed to delay disease progression by mobilizing natural killer (NK) cells through secretion of IL-12(p70) and activating T cells by stimulation with WT-1 and PRAME, two prominent antigens in AML. DC vaccination was carried out in weeks 1, 2, 3, 4, 6 and monthly thereafter for 2 years. Two questions were prominent at the trial start. First, could mature DCs (mDCs) be efficiently prepared to accommodate the vaccine regimen, including use of separate DC-fractions for each antigen. Second, could suitable quality DC vaccines be generated from patients with myeloid disease, since all had received intensive chemotherapy, impairing hematopoiesis, such that several patients showed extended times for monocyte recovery in peripheral blood before being able to undergo apheresis for production.

Methods Immune monitoring tools were used to assess DC vaccines: multi-color flow cytometry for surface and intracellular protein staining, dual-color ELISPot for secretion of IL-10/IL-12, and chemokine-directed trans-well migration. Detection of delayed type hypersensitivity responses post-vaccination at six weeks indicated the patient groups that relapsed or remained in remission, nor filled and high quality mDCs were generated for every patient. Quantity and quality of DC vaccines did not differ in patients differing in age, AML subtype and receiving varied chemotherapies, patients were eligible to continue administration of the 4th infusion, according to Common Terminology NCI CTCAE Version 4.0.3. If there were no dose associated toxicities, patients were eligible to continue administration of LioCyx-M at dose of 5 × 10 6 cells/kg BW weekly. Tumor response per RECIST 1.1 criteria and survival time were assessed.

Results At data cutoff (30 April 2020), eight patients were enrolled, with a median age of 53 (range: 49 - 67). These patients received a median number of 6 (range: 4 - 12) infusions of LioCyx-M. 1 patient developed Grade 3 elevations in alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST) and bilirubin after receiving LioCyx-M at dose level of 1 × 10 10 cells/kg BW. Another patient had Grade 1 transient fever after receiving LioCyx-M at dose level 5 × 10 6 cells/kg BW in the 4th, 5th and 6th infusions. No treatment-related adverse events (trAEs) such as cytokine release syndrome or neurotoxicity were observed. No fatal trAEs were observed. The median time to progression was 1.9 months (range: 0.2 - 9.5 months). The median overall survival was 34 months (range: 3 - 38.2 months).

Conclusions The encouraging clinical outcome and tolerable safety highlight the good benefit-risk profile of LioCyx-M. Therefore, further exploration of efficacy of LioCyx-M treatment for advanced HBV-HCC is warranted in a Phase 2 proof-of-concept clinical study.

Acknowledgements Funding: Lion TCR.

Trial Registration NCT03899415

Ethics Approval The study was approved by Fifth Medical Center of Chinese PLA General Hospital’s Ethics Board, approval number R2016185D1010.
Background LioCyx-M is an immunotherapeutic product based on autologous T cells transiently modified with in vitro transcribed mRNA encoding HBV-specific T-cell receptors (TCR). We have previously shown, in a compassionate setting, the ability of LioCyx-M cells to recognize and lyse hepatocellular carcinoma (HCC) expressing HBV antigens derived from HBV-DNA integration in patients with HCC recurrence post-liver transplant.1 Here, we report our phase I study aimed to determine the feasibility, safety and preliminary efficacy of LioCyx-M in recurrent HBV-related HCC post-liver transplantation.

Methods Eligible patients with HBsAg-positive recurrent HCC as well as HLA-matched to selected TCRs were enrolled in this study. All patients underwent leukapheresis prior to treatment and peripheral blood mononuclear cells (PBMC) were collected for LioCyx-M manufacturing. During the 1st treatment cycle, patients received 4 escalating doses of 1×10^4 cells/kg BW ($n=3$) respectively. No cytokine release syndrome version 4.0. In the second treatment cycle, patients received 4 escalating doses of 5×10^6 cells/kg BW was intravenously administered every 7 days. Adverse events were evaluated by Common Terminology Criteria for Adverse Events Version 4.0. In the second treatment cycle, one infusion of LioCyx-M at dose of 1–5 x 10^6 cells/kg BW was intravenously administered every 4 weeks for 4 weeks. The anti-tumour efficacy of LioCyx-M was evaluated per RECIST 1.1 criteria and survival was followed up during the study.

Results Six patients were enrolled, with a median age of 43.5 (range: 28 - 47). These patients received a median number of 6.5 doses of LioCyx-M therapy (range: 4 - 12). Only fever was observed as treatment-related AEs. Grade 1 fever was observed at dose levels of 1 x 10^4 cells/kg BW ($n=1$) and 1–5 x 10^5 cells/kg BW ($n=3$) respectively. No cytokine release syndrome and neurotoxicity-like AEs were observed. Out of 4 patients evaluable for tumor response, the median of time to progression was at 1.3 months (range: 1.2 - 1.6 months). The median overall survival was 14 months (range: 4 - 22 months). At data cutoff (30 April 2020), one patient was still alive and 5 were deceased.

Conclusions Our data showed that multiple infusions of LioCyx-M are well tolerated at all dose levels administrated in recurrent HCC post liver transplantation, with no adverse effect to the transplanted liver. This calls for further assessment in a Phase 2 study.

Acknowledgements Funding: Lion TCR.

Trial Registration NCT027179782

Ethics Approval The study was approved by Sun Yat-Sen Third Affiliated Hospital’s Ethics Board, approval number [2015]2-157.

REFERENCE

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0272