Abstracts


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0031

[32] C-REACTIVE PROTEIN (CRP) AS A PROGNOSTIC BIOMARKER IN ADVANCED NON-SMALL CELL LUNG CANCER TREATED WITH IMMUNE CHECKPOINT INHIBITORS. RESULTS FROM A MULTI-CENTER INTERNATIONAL OBSERVATIONAL STUDY

1Abdul Rafeh Naqash*, 2Alessio Cortellini, 3Emma Mi, 6Sweta Jonnalagadda, 5Shanker Polsani, 5Rahim Jiwani, 5Nitika Sharma, 6Chipman Stroud, 2Daria Gramenitskaya, 2James Clark, 5Kevin O’Brien, 5Mahvish Muzaffar, 2Aquila, 2Cole Khamnei, 2Will Liao, 2Nicolas Robine, 2Adam Widman*, 2Jedd Wolchok, 1Margaret Callahan, 3Dan Landau.

Background CRP is an acute-phase protein produced primarily in response to interleukin-6 via transcriptional activation of the STAT3. Recent data have provided mechanistic insights into the immune suppressive role of elevated CRP by elucidating its influence on effector T-cell function and antigen presentation. Furthermore, melanoma patients in Checkmate-064 treated with ICIs demonstrated significantly inferior outcomes associated with CRP > 10 mg/l in NSCLC patients treated with ICIs based therapies. The potential influence of the immune suppressive effects of elevated CRP and IL-6 on the anti-tumor efficacy of ICIs needs prospective evaluation and could potentially be exploited as a therapeutic avenue in NSCLC.

Abstract 32 Figure 1 Kaplan-Meier Curves with 95% CI for PFS and OS

Significantly inferior median PFS and OS were seen for patients with CRP-H vs. CRP-N.

Acknowledgements Susan Eubanks and Sue-Ann Joyner at the ECU IRB for their help and support.

Ethics Approval The primary IRB approval for this study was conducted under an ECU (P-MAIT-UMCIRB-15-001400). Individual approval was also obtained from the respective IRB of each participating institution.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0032

[33] DYNAMIC MONITORING OF RESPONSE TO IMMUNE CHECKPOINT BLOCKADE THROUGH DEEP-LEARNING EMPOWERED ULTRA-SENSITIVE LIQUID BIOPSY IN MELANOMA

1Adam Widman*, 2Cole Khamnei, 2Jake Bass, 3Will Liao, 4Minta Shah, 4Nicolas Robine, 5Jedd Wolchok, 5Margaret Callahan, 6Dan Landau, 2Memorial Sloan Kettering Cancer Center, New York, NY, USA; 5New York Genome Center, New York, NY, USA; 4Weill Cornell Medicine, New York, NY, USA

Background Clearance of circulating tumor DNA (ctDNA) following checkpoint blockade (CB) can precede radiographic response, though current state of the art ctDNA detection via targeted panels faces limited sensitivity in low burden disease (figure 1). We previously showed that whole genome sequencing (WGS) of plasma can overcome low input of ctDNA to dynamically track low volume malignancy using matched tumor tissue. We therefore sought to evaluate


March 26, 2021 by guest. Protected by copyright.