Background NY-ESO-1–specific T cells (letetresgene autoleucel [lete-cel]; GSK3377794) are autologous T cells transduced with a self-inactivating lentivector to express an engineered NY-ESO-1–specific TCR that recognizes HLA-A*02–presented peptides derived from NY-ESO-1, a cancer/testis antigen expressed in 70% of SS. NCT01343043 was a Phase I, open-label trial assessing safety, efficacy, and pharmacokinetics of lete-cel in patients with SS; activity was evaluated after different lymphodepletion conditioning regimens and in patients with differing levels of NY-ESO-1 expression.

Methods Patients with unresectable, metastatic, or recurrent SS who were intolerant/nonresponsive to standard first-line chemotherapy enrolled in 4 cohorts based on NY-ESO-1 tumor expression and more intensive lymphodepletion regimen in Cohorts 1–4, efficacy, and peak persistence in the mITT population (table 1). Primary endpoint was investigator-assessed overall response rate (ORR) per RECIST v1.1; secondary endpoints included duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. Transduced cell persistence was measured by qPCR of transgene vector copies in DNA extracted from PBMCs. Study was not designed/powered to compare cohorts.

Results Overall, 50 patients enrolled; 45 received lete-cel infusion (modified intent-to-treat population). Demographics were similar between cohorts. Median time in study was 480/278/352/278 days in Cohorts 1/2/3/4, respectively. At study completion, ORR ranged from 20%–50% between cohorts, with 1 complete (lasting 34 weeks) and 14 partial responses (table 1). In Cohorts 1/2/3/4, respectively, median DoR was 31.0/8.6/24.3/9.9 months; Cohort 4 median OS was immature.

Conclusions In patients with advanced SS who need effective treatment, lete-cel had a manageable safety profile; responses occurred in allcohors, but patients with high NY-ESO-1 expression and more intensive lymphodepletion regimen received greatest benefit.

Acknowledgements This study (208466) was funded by GlaxoSmithKline. Medical writing assistance was provided by Gemma Corr, DPhil, and Tiffany Brake, PhD, of Fishawack Indicia, UK, and funded by GlaxoSmithKline. We thank Ran Ji for contributions to statistical analysis.
IMMUNO-METABOLIC SIGNATURES OF DENDRITIC CELLS ASSOCIATE WITH T-CELL RESPONSES IN MELANOMA PATIENTS

Juraj Adamik*, Deena Maurer, Paul Munson, Alexis Combes, Philippe Pierre, Matthew Krummel, Rafael Anguiller, Lisa Butterfield, Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA; University of Pittsburgh, Pittsburgh, PA, USA; University of California, San Francisco, San Francisco, CA, USA; Centre d’Immunologie de Marseille-Luminy, Marseille, France

Background The therapeutic efficacy of Dendritic cells (DC) vaccines remains low and there is an unmet need for more effective vaccine design to achieve durable clinical outcomes. Our study analyzed the transcritptomic and energetic metabolism profile of an adenoviral-based DC vaccine targeted against three commonly shared melanoma antigens: Tyrosinase, MART-1 and MAGE-A6 from 35 subjects enrolled in a Phase I study of autologous DC vaccines in late-stage melanoma. To further investigate the immuno-metabolic features of mono-cyte-derived DC vaccines, we are employing a novel flow cytometry-based method, called SCENITH to integrate functional metabolic states with multiparametric DC immune phenotypes.

Methods iDC were generated from HD and patient monocytes using GM-CSF+IL-4 for 5d. DC were matured (mDC) using IFN?+LPS for additional 24 hrs. Tolerogenic DC (Tol DC) were generated using vitamin-D3 and dexamethasone. Seahorse® was used to measure DC metabolic profile. Cytometer-based method, called SCENITH2 to integrate functional metabolic states with multiparametric phenotype and metabolic analysis by SCENITH3.

Results Melanoma patient mDC used for autologous vaccine generation showed significantly altered metabolic gene signatures associated with enhanced oxidative phosphorylation (OXPHOS) and lipid metabolism pathways as compared to HD mDC. Furthermore, increased enrichment for mitochondrial respiration genes involved in the TCA cycle, electron transport chain and fatty acid oxidation (FAO) correlated with inferior tumor antigen-specific T cell responses and clinical outcome in patients. Seahorse analyses confirmed that HD and good outcome patient DC demonstrated the highest maturation-induced reduction in maximal oxygen consumption rate/OXPHOS and exogenous FAO. Interestingly, while the glycolytic rate of non-responding patient DC was the lowest, overall, we observe only a moderate increase in glycolytic capacity during DC maturation. SCENITH analysis showed that unlike monocytes, which are primarily glycolytic, differentiated mono-derived iDC and mDC utilize both glycolysis and mitochondrial respiration. Interestingly, under tolerogenic (Tol) differentiation conditions Tol iDC shift from glucose dependence into FAO and/or glutaminolysis while Tol mDC strongly depend on OXPHOS. Consistent with dependence on mitochondrial respiration, Tol mDC exhibit reduced HIF1a levels together with enhanced p-AMPK:p-TOR ratio. Additionally, we show that the altered metabolism of Tol mDC is linked to retention of CD14-monocyte antigen with reduced DC markers HLA-DR, CD86, CD206, CD11c, CD33, with increased PD-L1 and ILT3 expression. Furthermore, we show that unlike HD mDC, tolerogenic and melanoma patient-derived mDC populations exhibit similar metabolic and immune characteristics.

Conclusions We demonstrate that metabolic profile of DCs is tightly associated to the immuno-stimulatory potential of DC vaccines from cancer patients. Using SCENITH, we linked phenotypic and functional metabolic changes associated to immune signatures that correspond to healthy and immuno-suppressed DC differentiation.

Ethics Approval The clinical trial reported was fully approved by the Univ. Pittsburgh PRC and IRB (PRO12010416, #09–021) and had FDA IND #15044 and NCT01622933.

REFERENCES

300 FINAL ANALYSIS OF A PROSPECTIVE, RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED PHASE IIIB TRIAL OF TUMOR LYSATE, PARTICLE-LOADED, DENDRITIC CELL VACCINE IN STAGE III/IV MELANOMA: 36-MONTH ANALYSIS

Lory Adams*, Robert Chick, Timothy Vreeland, Patrick McCarthy, Anne O’Shea, Phil Kemp, Boban, Annelles Hickeron, John Myers, Jessica Cindas, Diane Hail, Mark Fairies, John Hogstrom, Adam Berger, James Jakub, Jeffrey Sussman, Montaser Shaheen, Thomas Wagner, George Peoples, Brooke Army Medical Center, San Antonio, TX, USA; 2John Wayne Cancer Institute, Los Angeles, CA, USA; 3University of Utah, Salt Lake City, UT, USA; 4Rutgers Cancer Institute of New Jersey, Philadelphia, PA, USA; 5Mayo Clinic, Rochester, MN, USA; 6University of Cincinnati, Cincinnati, OH, USA; 7University of Arizona, Phoenix, AZ, USA; 8Orib Health Solutions, Greenville, SC, USA; 9Cancer Vaccine Development Program, San Antonio, TX, USA

Background The tumor lysate, particle-loaded, dendritic cell (TLPLDC) vaccine is created ex vivo by loading autologous dendritic cells (DC) with yeast cell wall particles (YCW) containing autologous tumor lysate, thus delivering tumor antigens to the DC cytoplasm via phagocytosis. TLPLDC then activates a robust T cell response against the unique antigens for each patient. The primary analysis of the prospective, randomized, multi-center, double-blind, placebo-controlled phase IIb trial in patients with resected stage III/IV melanoma showed TLPLDC improved 24-month disease-free survival (DFS) in the per-treatment (PT) analysis (patients completing the 6-month primary vaccine series). Here, we examine the secondary endpoint of 36-month DFS and overall survival (OS).

Methods Patients with resected stage III/IV melanoma were randomized 2:1 to TLPLDC vaccine or placebo (autologous DC loaded with empty YCW). Treatments were given at 0, 1, 2, 6, 12 and 18 months. The protocol was amended to include patients receiving concurrent checkpoint inhibitors (CPIs) to follow changes in standard of care. The co-primary endpoints were 24-month DFS by intent-to-treat (IT) analysis and per-treatment (PT) analysis, with secondary endpoints including 36-month DFS and OS by ITT and PT analysis, pre-specified analysis by stage, and safety as measured by CTCAE v4.03.