A PHASE 1/1B STUDY OF SBT6050, A HER2-DIRECTED MONOCLONAL ANTIBODY CONJUGATED TO A TOLL-LIKE RECEPTOR 8 AGONIST, IN SUBJECTS WITH ADVANCED HER2-EXPRESSING SOLID TUMORS

1Leisha Emens*, 2Muralidhar Beeram, 3Erika Hamilton, 4Sarina Piha-Paul, 5Valerie Odegard, 6Naomi Hunder, 7Samuel Klempner, 8University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 2The Start Center for Cancer Care, San Antonio, TX, USA; 5Sarah Cannon Research Institute, Nashville, TN, USA; 4MD Anderson Cancer Center, Houston, TX, USA; 3Sarepta Therapeutics, Inc., Seattle, WA, USA; 8Massachusetts General Hospital, Boston, MA, USA

Background New strategies are needed to improve outcomes in human epidermal growth factor receptor 2 (HER2)-expressing cancers. SBT6050 is a novel therapeutic comprising a specific small molecule toll-like receptor (TLR) 8 agonist conjugated to a HER2-directed monoclonal antibody. TLR8 is highly expressed in myeloid cells that are prevalent in human tumors, including dendritic cells (DCs) and macrophages, and modulates their pro-inflammatory activity. SBT6050 is designed to activate human myeloid cells only in the presence of moderate-to-high HER2 expression (immunohistochemistry [IHC] 2+ or 3+) and binds to the same epitope as pertuzumab. In preclinical studies, SBT6050 potently induces a broad spectrum of antitumor immune mechanisms, including proinflammatory cytokine and chemokine production, inflammasome activation, and indirect activation of T and natural killer (NK) cells. TLR8 agonism has emerged as a promising approach to overcome resistance to immune checkpoint inhibitors in tumors lacking T-cell infiltrates, as these cancers are often replete with myeloid cells. Using an SBT6050 mouse surrogate in vivo, curative single-agent efficacy was observed in multiple murine tumor models, including a model deficient in T, B, and NK cells. In preclinical toxicity studies in nonhuman pri-mates, SBT6050 was well tolerated, supporting a first-in-human starting dose that is predicted to be pharmacologically active, with a short escalation to projected clinically active doses. Preclinical studies also support combinations with checkpoint inhibitors and with trastuzumab to further enhance antitumor activity.

Methods SBT6050-101 is an ongoing phase 1/1b, first-in-human, open-label, multicenter study. Eligible subjects are adults with histologically confirmed, HER2-expressing (IHC 2+ or 3+), locally advanced (unresectable) and/or metastatic cancer. Subjects must have measurable disease per the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and have previously received all therapies known to confer clinical benefit. SBT6050 is given subcutaneously every 2 weeks and treatment may continue for up to 2 years or until disease progression, unacceptable toxicity, or other reason for discontinuation. The trial objectives are to evaluate the safety and tolerability of SBT6050 and to identify the maximum tolerated dose and recommended phase 2 dose (RP2D). The study has 2 parts: Part 1, consisting of a dose escalation using a standard 3+3 design, and Part 2, consisting of 5 parallel expansion cohorts based on tumor type and HER2 expression level and treated with SBT6050 at the RP2D. Pharmacokinetics, immunogenicity, and antitumor activity will be evaluated and pharmacodynamic markers of myeloid cell activation will be assessed in peripheral blood and on-treatment tumor biopsies.

Results N/A

Conclusions N/A

OLAPARIB PLUS PEMBROLIZUMAB IN PATIENTS WITH PREVIOUSLY TREATED ADVANCED SOLID TUMORS WITH HOMOLOGOUS RECOMBINATION REPAIR DEFICIENCY: KEYLYNK-007

1Timothy A Yap*, 2Malika Dhawan, 3Andrew E Hendfid, 4Micha Moio, 5Taofeek K. Owonikoko, 6Miguel Quintela-Fandino, 7Ronne Shapira-Frommer, 8Sanatan Saraf, 9Ping Qiu, 10Fan Jin, 11Alexander Gozman, 12Douglas A Levine. 1The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; 3Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 4Center for Immunology, University Hospital of Siena, Siena, Italy; 5Winship Cancer Institute, Emory University, Atlanta, GA, USA; 6Center for Investigaciones Oncológicas, Madrid, Spain; 7Chaim Sheba Medical Center, Tel HaShomer, Israel; 8Mack and Co., Inc., Kenilworth, NJ, USA; 9Laura and Isaac Perlmutter Cancer Center, New York, NY, USA

Background Treatment with the anti-PD-1 antibody pembrolizumab has improved clinical outcomes in multiple previously treated advanced solid tumors. The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib has shown antitumor activity as monotherapy in patients with previously treated advanced ovarian, breast, pancreatic, and prostate cancers with BRCA1/BRCA2 mutations (BRCAm). Activity was also seen in patients with previously treated advanced solid tumors with other homologous recombination repair mutation (HRRm) and in those with ovarian cancer with homologous recombination repair deficiency (HRD) phenotype. PARP inhibitors have been found to increase interferon signaling and tumor infiltrating lymphocytes, enhancing tumor susceptibility to immune checkpoint blockade. Antitumor activity of PD-1+PARP inhibition was found to be higher than expected with either agent alone in patients with recurrent ovarian cancer regardless of BRCAm or HRD status and in patients with BRCAm breast cancer. KEYLYNK-007 (NCT04123366) evaluates the antitumor activity and safety of olaparib in combination with pembrolizumab in patients with previously treated advanced solid tumors with HRRm and/or HRD.

Methods This phase 2, nonrandomized, multicenter, open-label study will enroll approximately 300 patients aged ≥18 years