Background TLR agonists mediate antitumor activity through dendritic cell (DC) activation. Most TLR agonists in development are administered intratumorally allowing for less than 30% of advanced solid tumor to be treated. BDB001 is an intravenously administered novel TLR7/8 agonist that activates plasmacytoid and myeloid DCs and has shown to have activity in preclinical studies. Here we report on BDB001 administration in patients with advanced solid tumors.

Methods BDB001-101 is a Phase 1, open label, dose escalation/expansion trial of BDB001 administered intravenously weekly in patients with advanced solid tumors. The primary endpoint was safety and tolerability. Secondary endpoints included efficacy, pharmacokinetics and pharmacodynamic profiling of immune activation.

Results Thirty-six subjects with 16 different tumor types were enrolled across 5 dose levels. Thirty-seven percent were female, median age was 66 years (range, 38–88), median number of prior therapies was 4 (range, 0–12), and 61% of tumors had progressed on prior anti-PD-(L)1 therapy. BDB001 was well tolerated and a maximum tolerated dose was not reached. Eleven (30.5%) subjects had no treatment related adverse events (AEs) and the majority of AEs were Grade 1 or 2. Three (8.3%) subjects had Grade 3 AEs, including 2 with a cytokine release syndrome, both of whom were clinically stable and had symptoms fully resolved within 2 to 5 days. There were no Grade 4 or 5 AEs. The most common AEs included chills/rigor (19.4%), fever (19.4%), fatigue (11.1%), nausea (11.1%) and pruritus (11.1%). Of 32 subjects evaluable for efficacy, best overall response rate was: 6% durable partial response, 56% stable disease, 38% progressive disease, for a disease control rate of 62%. Durable responses were seen in preclinical studies. Here we report on BDB001 administration in patients with advanced solid tumors.

Conclusions Intraare cyclic administered BDB001 monotherapy was well tolerated. Clinical responses were achieved, supported by BDB001-induced immune activation. Preliminary findings suggest that BDB001 is a promising therapeutic option for patients with tumors that progress on anti-PD-(L)1 therapy. BDB001 is also being evaluated in combination with pembrolizumab (anti-PD-1, NCT03486301) and with atezolizumab (anti-PD-L1, NCT04196350).

Trial Registration NCT03486301

Ethics Approval This study was approved by the institutional review boards at the four participating institutions. All subjects signed informed consent before enrolling in the clinical trial.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0324
Abstract 325 Figure 1 Antibody responses to SARS-CoV-2 spike protein in patients treated with CPI-006

represents a novel therapy for COVID-19 aimed at stimulating more robust and prolonged anti-SARS-CoV-2 immunity potentially after infection or with vaccination.

Trial Registration NCT04464395

Ethics Approval The study was approved by Temple University Hospital’s Ethics Board, Western IRB, approval number 1-1317457-1.

REFERENCE

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0325

326 SARS-COV-2 SPECIFIC T-CELLS IN TIL FROM PATIENTS WITH EPITHELIAL CANCER

Background SARS-CoV-2 primarily infects the upper and lower airway system, yet also endothelial cells and multiple tissues/organ systems. Anti-SARS-CoV-2 directed cellular immune responses may be deleterious or may confer immune protection – more research is needed in order to link epitope-specific T-cell responses with clinically relevant endpoints. Analysis of epitope reactivity in blood from healthy individuals showed pre-existing (CD4+) reactivity most likely due to previous exposure to the common old coronavirus species HCoV-OC43, HCoV-229E, - NL63 or HKU1, or previous exposure to the common old coronavirus species HCoV-OC43, HCoV-229E, - NL63 or HKU1, or – or not mutually exclusive - cross-reactive T-cell responses that would recognize SARS-CoV-2, yet also other non-SARS-CoV-2 targets. Detailed single cell analysis in PBMCs from patients with COVID-19 showed strong T-cell activation and expansion of TCR gamma - delta T-cells in patients with fast recovery or mild clinical symptoms. Previous studies examining antigen-specific T-cell responses in tumor-infiltrating T-cells (TIL) showed that EBV or CMV-specific cellular immune responses in TIL from patients with melanoma or pancreatic cancer. Such virus-specific T-cells may represent ‘bystander’ T-cell activation, yet they may also impact on the quality and quantity of anti-tumor directed immune responses. We tested therefore TIL expanded from 5 patients with gastrointestinal cancer, who underwent elective tumor surgery during the COVID-19 pandemic for recognition of a comprehensive panel of SARS-CoV-2 T-cell epitopes and compared the reactivity, defined by IFN-gamma production to TIL reactivity in TIL harvested from patients in 2018, prior to the pandemic. Methods A set of 187 individual T-cell epitopes were tested for TIL recognition using 100IU IL-2 and 100 IU IL-15. Different peptide epitopes were selected: i) all epitopes were not shared with the 4 common old coronavirus species, ii) some peptides were unique for SARS-CoV-2, and iii) others were shared with SARS-CoV-1. Antigen targets were either 15mers or 9mers for MHC class II or class I epitopes, respectively, derived from the nucleocapsid, membrane, spike protein, ORF8 or the ORF3a. The amount of IFN-gamma production was reported as pg/10e4 cells/epitope/5 days. Controls included CMV and EBV peptides. Results We detected strong IFN-gamma production directed against antigenic ‘hotspots’ including the ORF3a, epitopes from the SARS-CoV-2 nucleocapsid and spike protein with a range of 12 up to 30 targets being recognized/TIL. Conclusions SARS-CoV-2 epitope recognition, defined by IFN production, can be readily detected in TIL from patients who underwent surgery during the pandemic, which is not the case for TIL harvested prior to the circulating SARS-CoV-2. This suggests a broader exposure of individuals to SARS-CoV-2 and shows that SARS-CoV-2 responses may shape the quality and quantity of anti-cancer directed cellular immune responses in patients with solid epithelial malignancies. Acknowledgements We thank the Surgery, Pathology and Viva-rium Units of Champalimaud Clinical Center (N. Figueiredo, A. Brandl, A. Beltran, M. Castillo, C. Silva ).

Ethics Approval This study was approved by the Champalimau Foundation Ethics Committee.

Consent All donors provided written consent and the study was approved by the local ethics committee. The study is in compliance with the Declaration of Helsinki.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0325

327 STUDY OF ANTI-PD-1 ANTIBODY MULTIMODAL COMBINATION AS FIRST-LINE TREATMENT ON TIME WINDOW OF ADVANCED SOLID TUMOR

Jian Sh*, Baoen Shan, Junyan Wang, Jiuyin Liu, Rongfeng Liu, Yujie Shan. Fourth Hospital of Hebei Medical University, shijiazhuang, China

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0326