SARS-COV-2 SPECIFIC T-CELLS IN TIL FROM PATIENTS
STUDY OF ANTI-PD-1 ANTIBODY MULTIMODAL
A200
Authors: A200

Abstract 325

Figure 1

Antibody responses to SARS-CoV-2 spike protein in patients treated with CPI-006

represents a novel therapy for COVID-19 aimed at stimulating more robust and prolonged anti-SARS-CoV-2 immunity potentially after infection or with vaccination.

Trial Registration NCT04464395

Ethics Approval The study was approved by Temple University Hospital’s Ethics Board, Western IRB, approval number 1-1317457-1.

REFERENCE


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0325

SARS-COV-2 SPECIFIC T-CELLS IN TIL FROM PATIENTS WITH EPITHELIAL CANCER

1Pedro Noronha*, 1Georgia Paraschoudi, 1Eric Sousa, 1Jesica Kamiki, 1Patricia Antonio, 1Carolina Condenço, 1Inês Silva, 1Andrea Maia, 1Mireia Castillo-Martin, 1António Beltran, 2Carlos Carvalho, 1Joana Léria, 1Ailmuddin Zumla, 1Markus Mauerer. Champalimaud Centre for the Unknown, Lisbon, Portugal; 2Champalimaud Clinical Centre, Lisbon, Portugal; 3University College London, London, UK

Background SARS-CoV-2 primarily infects the upper and lower airway system, yet also endothelial cells and multiple tissues/organ systems. Anti-SARS-CoV-2-directed cellular immune responses may be deleterious or may confer immune protection – more research is needed in order to link epitope-specific T-cell responses with clinically relevant endpoints. Analysis of epitope reactivity in blood from healthy individuals showed pre-existing (CD4+) reactivity most likely due to previous exposure to the common old coronavirus species HCoV-OC43, HCoV-229E, - NL63 or HKU1, or previous exposure to the common old coronavirus species HCoV-OC43, HCoV-229E, - NL63 or HKU1, or exclusive - cross-reactive T-cell responses that would recognize SARS-CoV-2, yet also other non-SARS-CoV-2 targets. Detailed single cell analysis in PBMCs from patients with COVID-19 showed strong T-cell activation and expansion of TIL from patients with fast recovery or with low clinical symptoms. Previous studies examining antigen-specific T-cell responses in tumour-infiltrating T-cells (TIL) showed that EBV or CMV-specific cellular immune responses in TIL from patients with melanoma or pancreatic cancer. Such virus-specific T-cells may represent ‘bystander’ T-cell activation, yet they may also impact on the quality and quantity of anti-tumor directed immune responses. We tested therefore TIL expanded from 5 patients with gastrointestinal cancer, who underwent elective tumor surgery during the COVID-19 pandemic for recognition of a comprehensive panel of SARS-CoV-2 T-cell epitopes and compared the reactivity, defined by IFN-gamma production to TIL reactivity in TIL harvested from patients in 2018, prior to the pandemic.

Methods A set of 187 individual T-cell epitopes were tested for TIL recognition using 100IU IL-2 and 100 IU IL-15. Different peptide epitopes were selected: i) all epitopes were not shared with the 4 common old coronavirus species, ii) some peptides were unique for SARS-CoV-2, and iii) others were shared with SARS-CoV-1. Antigen targets were either 15 mers or 9mers for MHC class II or class I epitopes, respectively, derived from the nucleocapsid, membrane, spike protein, ORF8 or the ORF3a. The amount of IFN-gamma production was reported as pg/10e4 cells/epitope/5 days. Controls included CMV and EBV peptides.

Results We detected strong IFN-gamma production directed against antigenic ‘hotspots’ including the ORF3a, epitopes from the SARS-CoV-2 nucleocapsid and spike protein with a range of 12 up to 30 targets being recognized/TIL.

Conclusions SARS-CoV-2 epitope recognition, defined by IFN production, can be readily detected in TIL from patients who underwent surgery during the pandemic, which is not the case for TIL harvested prior to the circulating SARS-CoV-2. This suggests a broader exposure of individuals to SARS-CoV-2 and shows that SARS-CoV-2 responses may shape the quality and quantity of anti-cancer directed cellular immune responses in patients with solid epithelial malignancies.

Acknowledgements We thank the Surgery, Pathology and Vavarium Units of Champalimaud Clinical Center (N. Figueiredo, A. Brandl, A. Beltran, M. Castillio, C. Silva ).

Ethics Approval This study was approved by the Champalimaud Foundation Ethics Committee.

Consent All donors provided written consent and the study was approved by the local ethics committee. The study is in compliance with the Declaration of Helsinki.

REFERENCES


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0326

STUDY OF ANTI-PD-1 ANTIBODY MULTIMODAL COMBINATION AS FIRST-LINE TREATMENT ON TIME WINDOW OF ADVANCED SOLID TUMOR

Jian Shi*, Baoen Shan, Junyan Wang, Jiayin Liu, Rongfeng Liu, Yujie Shan. Fourth Hospital of Hebei Medical University, shijiazhuang, China

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0326
