Methods IPI-549-01 (NCT02637531) evaluates eganelisib in advanced solid tumors, as monotherapy and in combination with nivolumab. The combination expansion dose was eganelisib 40 mg QD PO + nivolumab 240 mg Q2W IV. Combination expansion cohorts include SCCHN patients resistant to immediate prior anti-PD(L)1 therapy. Safety, preliminary clinical activity, PK, and correlative study of blood and tumor biopsy samples were mandated.

Results As of June 1, 2020, 180 patients were treated with eganelisib + nivolumab including 21 with SCCHN. The most common (>20% of patients) treatment-emergent adverse events in patients treated with eganelisib + nivolumab (N = 180) were fatigue (34.4%), increased AST (30.0%), increased ALT (26.7%), nausea (25.0%), pyrexia (25.0%), anemia (22.8%), decreased appetite (20.6%), and cough (20.6%). 85 (47.2%) patients experienced at least 1 treatment-emergent serious adverse event (SAE) and 19 (10.6%) had a treatment-related SAE. There were no treatment-related grade 5 adverse events as assessed by investigators. Preliminary data from the SCCHN cohort show that in the efficacy-evaluable population which includes all patients (n=20) who had at least 1 post-baseline response assessment or discontinued treatment due to disease progression, the overall response rate (ORR, ie. CR [complete response] or PR [partial response]) per RECIST v1.1 is 10.0%, the disease control rate (DCR, ie. CR, PR, or SD [stable disease]) is 45.0%, and the clinical benefit rate (CBR, ie. CR, PR, or SD of at least 24 weeks from first treatment) is 25.0%, per RECIST v1.1. For patients that received ≤ 2 lines of prior systemic therapy (n=11), the ORR is 20.0%, the DCR is 40.0%, and the CBR is 30.0%. In total, there are 2 patients with PR (duration of response 1.6–9.3 months) and 3 with SD for greater than 6 months' treatment duration. Translational data including T cell proliferation in peripheral blood as well as markers of inflammation in baseline biopsy of PR patient will be presented.

Conclusions Eganelisib + nivolumab demonstrates an acceptable safety profile and preliminary clinical activity in patients with SCCHN who were resistant to immediate prior anti-PD (L)1 therapy. Updated clinical and translational data will be presented.

Ethics Approval The study was approved by WIRB, Study Number 1188591 and IRB Tracking Number: 20180297.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0352

353 SAFETY AND EFFICACY OF TUMOR INFILTRATING LYMPHOCYTES (TIL, LN-145) IN COMBINATION WITH PEMBROLIZUMAB FOR ADVANCED, RECURRENT OR METASTATIC HNSCC

1Antonio Jimeno*, 2Sophie Papa, 2Misaak Haigertz, 4Juan Rodriguez-Moreno, 5Julian Schardt, 6Maria Fardis, 7Friedrich Graf Finckenberg, 8Rania Fiaz, 9Guang Chen, 6Alex Cacovean, 5Zelanna Goldberg, 4Ammar Sakari, 2University of Colorado Cancer Center, Aurora, CO, USA; 2Guy’s and St Thomas’ NHS Foundation Trust, London, UK; 8Atlantic Health Systems – Morristown, Morristown, NJ, USA; 2Hospital Universitario HM Sanchinarro, Sanchinarro, Spain; 3Universitätsspital Bern, Bern, Switzerland; 4Iovance Biotherapeutics, Inc., San Carlos, CA, USA; 5Iovance Biotherapeutics, San Carlos, CA, USA; 6Iovance Biotherapeutics, Inc., San Carlos, CA, USA; 7Iovance Biotherapeutics, Inc., San Carlos, CA, USA; 8Karmanos Cancer Center, Detroit, MI, USA

Background Single agent checkpoint inhibitors (CPI) are an approved first or second-line therapy in head and neck squamous cell carcinoma (HNSCC), but their efficacy is limited. Adoptive cell therapy with tumor infiltrating lymphocytes (TIL, LN-145) has demonstrated efficacy in multiple malignancies alone or in combination with CPI. To improve HNSCC therapy, a combination of pembrolizumab and LN-145 was explored.

Methods IOV-COM-202 is an ongoing Phase 2 multicenter, multi-cohort, open-label study evaluating LN-145 in multiple settings and indications, and here we report cohort 2A which enrolled CPI naïve HNSCC patients who received the combination of LN-145 and pembrolizumab. Key eligibility criteria include up to 3 lines of prior therapy, ECOG <1, at least one resectable metastasis for LN-145 production, and at least another measurable lesion after tumor resection. Primary end-points are ORR per RECIST v1.1 by investigator and safety as measured by the incidence of grade ≥ 3 treatment-emergent adverse events (TEAEs), LN-145 production method uses central GMP manufacturing in a 22-day process yielding a cryopreserved TIL product (figure 1). Preconditioning chemotherapy consists of cyclophosphamide/fludarabine, followed by LN-145, and then < 6 doses of IL-2 over <3 days. Pembrolizumab is initiated post-tumor harvest but prior to LN-145 and continues after LN-145 infusion Q3W until toxicity or progression (figure 2).

Results Nine (N=9) HNSCC patients have received LN-145 plus pembrolizumab, with a median duration of follow up of 6.9 months. Nine and 8 patients were evaluable for safety and efficacy, respectively. Mean number of prior therapies was 1.1 with 89% of the patients having received prior chemotherapy. Four were HPV+, 2 HPV-, 3 unknown. The Treatment Emergent Adverse Event (TEAE) profile was consistent with the underlying advanced disease and the known AE profiles of pembrolizumab, the lymphodepletion and IL-2 regimens. The most common TEAE were chills, hypotension, anemia, thrombocytopenia, pyrexia, fatigue and tachycardia. Four patients had a confirmed, objective response with an ORR of 44% (1 CR, 3 PR, 4 SD, 1 NE) per RECIST 1.1. The disease control rate at data cutoff was 89% in 9 patients, and 7 of the 8 evaluable patients (87.5%) had a reduction in target lesions. Median DOR was not reached.
Conclusions LN-145 can be safely combined with pembrolizumab in patients with metastatic HNSCC. LN-145 plus pembrolizumab shows early signs of improved efficacy particularly when compared with literature reports of pembrolizumab alone in a comparable patient population. Enrollment is ongoing and updated data will be presented.

Trial Registration NCT03645928

Ethics Approval The study was approved by Advarra Institutional Review Board, under protocol number: Pro00035064.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0353

A PHASE 1 TRIAL OF CUE-101 A NOVEL HPV16 E7-pHLA-IL2-FC FUSION PROTEIN IN PATIENTS WITH RECURRENT/METASTATIC HPV16+ HEAD AND NECK CANCER

1Sara Pai*, 2Douglas Adkins, 3Lori Wirth, 4Christine Chung, 5Michael Gibson, 6Ammar Sukari, 7Francis Worden, 8Dimitrios Colevas, 9Nabil Saba, 10Barbara Burtenshaw, 11Cristina Rodriguez, 12Julie Bauman, 13Lara Dunn, 14Anish Suri, 15Arvind Dahiya, 16Steven Quayle, 17Saso Cemerski, 18Megan Leader, 19Jason Brown, 20Kenneth Pienta, 21Mary Simcox. Massachusetts General Hospital, Boston, MA, USA; 22Washington University School of Medicine, St. Louis, MO, USA; 23H. Lee Moffitt Cancer Center, Tampa, FL, USA; 24Vanderbilt University Medical Center, Nashville, TN, USA; 25Karmanos Cancer Center, Detroit, MI, USA; 26University of Michigan, Ann Arbor, MI, USA; 27Stanford University School of Medicine, Stanford, CA, USA; 28Emory University, Atlanta, GA, USA; 29Vale School of Medicine, New Haven, CT, USA; 30University of Washington, Seattle, WA, USA; 31University of Arizona Cancer Center, Tucson, AZ, USA; 32Texas MD Anderson, Houston, TX, USA; 33Memorial Sloan Kettering Cancer Center, New York, NY, USA; 34Cue Biopharma, Cambridge, MA, USA; 35Johns Hopkins University School of Medicine, Baltimore, MD, USA

Background ImmuNo-STATSTM are novel, modular fusion proteins designed to selectively activate tumor-antigen-specific CD8+ T cells. Human papillomavirus (HPV) associated cancers serve as a model system to assess the safety and efficacy of the ImmuNo-STAT platform. CUE-101 is comprised of human leukocyte antigen (HLA) complex, HLA A*0201, a peptide epitope derived from the HPV type 16 E7 protein, and 4 molecules of a reduced affinity human interleukin-2 (IL2) designed to bind and activate HPV-specific T cells for eradication of HPV16-driven cancers. In preclinical studies CUE-101 demonstrated selective binding, activation, and expansion of HPV16 E7-specific CD8+ T cells, which translated into anti-tumor activity.1

Methods CUE-101-01 is a first-in-human (FIH) phase 1 study in patients diagnosed with HPV16+ recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) refractory to one or more lines of therapy. Trial eligibility includes MHC class I type HLA-A*0201 and a diagnosis of an HPV16 + HNSCC, as assessed by p16 IHC and confirmed by HPV16 mRNA ISH. CUE-101 is administered intravenously over 60 minutes every 21 days. Objectives include determination of safety, pharmacodynamics (PD), pharmacokinetics (PK), recommended phase 2 dose (RP2D), and preliminary anti-tumor activity. The safety results from treated participants will be presented.

Results 19 participants have received CUE-101 monotherapy as of August 7, 2020. Doses ranging from 0.06 to 1 mg/kg were determined to be safe and well-tolerated, enabling dose escalation to 2 mg/kg. Preliminary PK data demonstrate dose-dependent increases in drug exposure which are sustained upon repeat dosing, and low inter-subject variability. Preliminary data from systemic blood analyses show early signals of expansion of HPV-16 E711-20-specific CD8+ T cells. Stable disease (SD), as determined by RECIST 1.1, was observed in several participants in these early dose cohorts, with one subject maintaining SD up to 19 weeks. The maximum tolerated dose (MTD) has not yet been reached. As of May 14, 2020 (the development safety update report (DSUR) data-lock date), no dose limiting toxicities and the following adverse events were observed in the first 12 patients treated with CUE-101: fatigue (n=3), decreased appetite (n=1), arthralgia (n=1), muscular weakness (n=1), paraesthesia (n=1), bullous pemphigoid (n=1), and infusion-related reactions (n=1).

Conclusions CUE-101 is a novel agent that is demonstrating acceptable tolerability, favorable PK, and preliminary PD signals that support selective activation of tumor-specific T cells. Neither the MTD nor the monotherapy RP2D have been established. PD and PK analyses are ongoing as dose escalation continues.

Acknowledgements The authors would like to thank all the patients who are participating in this study. The study is sponsored by Cue Biopharma.

Trial Registration ClinicalTrials.gov NCT03978689

Ethics Approval This study was approved by Ethics and Institutional Review Boards (IRBs) at all study sites; IRB reference numbers: DF/HCC IRB# 19-374 (Massachusetts General Hospital), HRPO# 201905108 (Washington University School of Medicine), IRB 191714 (Vanderbilt University Medical Center Vanderbilt-Ingram Cancer Center), Advarra Pro00037736 (Moffitt Cancer Center), IRB(IRBMED) HUM00165746 (University of Michigan Comprehensive Cancer Center), 2019-087 (Karmanos Cancer Institute), WIRB IRB00112341(Winsip Cancer Institute/Emory University), WIRB 2000026098 (Yale Cancer Center), WIRB STUDY00008948 (University of Washington, Seattle ), WIRB 1908869642 (University of Arizona Cancer Center, IRB 20-073 (Memorial Sloan Kettering Cancer Center), 2019-0578 (The University of Texas MD Anderson Cancer Center), IRB 52744 (Stanford University School of Medicine).

REFERENCE

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0354

A559

FIRST-IN-HUMAN PHASE I STUDY OF NKTR-255 IN PATIENTS WITH RELAPSED/REFRACTORY HEMATOLOGIC MALIGNANCIES

1Nina Shah*, 2Alan Tan, 3Luihua Budde, 4Craig Hofmeister, 5Andrew Cowan, 6Hayder Saed, 7Zigye Ye, 8Mitchell Cairo, 9David Rizzieri, 10Gregory Orloff, 11Xue Snow Ge, 12Zachary Lee, 13Neha Dixit, 14Wildaliz Nieves, 15Mona Vimal, 16Hajim Ma, 17Takahiro Miyazaki, 18Louis Madamamrit, 19Maria Marcondes, 20Wei Lin, 21Mary Tagliani, 22Jonathan Zalevsky, 23Krina Patel. 1University of California San Francisco, San Francisco, CA, USA; 2Rush University Medical Center, Chicago, IL, USA; 3City of Hope Comprehensive Cancer Center, Duarte, CA, USA; 4Winship Cancer Institute of Emory University, Atlanta, GA, USA; 5University of Washington, Seattle, WA, USA; 6Lee Moffitt Cancer Center and Research Institute, Lutz, FL, USA; 7University of Michigan, Ann Arbor, MI, USA; 8New York Medical Center, Valhalla, NY, USA; 9Duke University School of Medicine, Durham, NC, USA; 10Virginia Cancer Specialists, Fairfax, VA, USA; 11Nkter Therapeutics, San Francisco, CA, USA; 12The University of Texas MD Anderson Cancer Center, Houston, TX, USA.