Conclusions LN-145 can be safely combined with pembrolizumab in patients with metastatic HNSCC. LN-145 plus pembrolizumab shows early signals of improved efficacy particularly when compared with literature reports of pembrolizumab alone in a comparable patient population. Enrollment is ongoing and updated data will be presented.

Trial Registration NCT03645928

Ethics Approval The study was approved by Advarra Institutional Review Board, under protocol number: Pro00035064.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0353

Abstracts

A PHASE 1 TRIAL OF CUE-101 A NOVEL HPV16 E7- PHLA-IL2-FC FUSION PROTEIN IN PATIENTS WITH RECURRENT/METASTATIC HPV16+ HEAD AND NECK CANCER

1Sara Pai*, 2Douglas Atkins, 3Lori Wirth, 4Christine Chung, 5Michael Gibson, 1Ammar Sukari, 6Francis Worden, 7Dimitrios Colevas, 8Nabil Saba, 9Barbara Burtness, 10Aristi Suri, 11Mark Haydock, 12Steven Quayle, 13Saso Cemerski, 14Megan Leader, 15Jason Brown, 16Kenneth Pienta, 17Mary Smocos. Massachusetts General Hospital, Boston, MA, USA; 2Washington University School of Medicine, St. Louis, MO, USA; 3H. Lee Moffitt Cancer Center, Tampa, FL, USA; 4Vanderbilt University Medical Center, Nashville, TN, USA; 5Karmanos Cancer Center, Detroit, MI, USA; 6University of Michigan, Ann Arbor, MI, USA; 7Stanford University School of Medicine, Stanford, CA, USA; 8Emory University, Atlanta, GA, USA; 9Yale School of Medicine, New Haven, CT, USA; 10University of Washington, Seattle, WA, USA; 11University of Arizona Cancer Center, Tucson, AZ, USA; 12The University of Texas MD Anderson, Houston, TX, USA; 13Memorial Sloan Kettering Cancer Center, New York, NY, USA; 14Cue Biopharma, Cambridge, MA, USA; 15Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Background Immuno-STATSTM are novel, modular fusion proteins designed to selectively activate tumor-antigen-specific CD8+ T cells. Human papillomavirus (HPV) associated cancers serve as a model system to assess the safety and efficacy of the Immuno-STAT platform. CUE-101 is comprised of human leukocyte antigen (HLA) complex, HLA-A*0201, a peptide epitope derived from the HPV type 16 E7 protein, and 4 molecules of a reduced affinity human interleukin-2 (IL2) designed to bind and activate HPV-specific T cells for eradication of HPV16-driven cancers. In preclinical studies CUE-101 demonstrated selective binding, activation, and expansion of HPV16 E7-specific CD8+ T cells, which translated into anti-tumor activity.

Methods CUE-101-01 is a first-in-human (FIH) phase 1 study in patients diagnosed with HPV16+ recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) refractory to one or more lines of therapy. Trial eligibility includes patients with metastatic head and neck squamous cancer with a diagnosis of an HPV16 E7+ tumor. The safety results from treated participants will be presented.

Results 19 participants have received CUE-101 monotherapy as of August 7, 2020. Doses ranging from 0.06 to 1 mg/kg were determined to be safe and well-tolerated, enabling dose escalation to 2 mg/kg. Preliminary PK data demonstrate dose-dependent increases in drug exposure which are sustained upon repeat dosing, and low inter-subject variability. Preliminary data from systemic blood analyses show early signals of expansion of HPV16 E711-20-specific CD8+ T cells. Stable disease (SD), as determined by RECIST 1.1, was observed in several patients in these early dose cohorts, with one subject maintaining SD up to 19 weeks. The maximum tolerated dose (MTD) has not yet been reached. As of May 14, 2020 (the development safety update report (DSUR) data-lock date), no dose limiting toxicities and the following adverse events were observed in the first 12 patients treated with CUE-101: fatigue (n=3), decreased appetite (n=1), arthralgia (n=1), muscular weakness (n=1), parasthesia (n=1), bullous pemphigoid (n=1), and infusion-related reactions (n=1).

Conclusions CUE-101 is a novel agent that is demonstrating acceptable tolerability, favorable PK, and preliminary PD signals that support selective activation of tumor-specific T cells. Neither the MTD nor the monotherapy RP2D have been established. PD and PK analyses are ongoing as dose escalation continues.

Acknowledgements The authors would like to thank all the patients who are participating in this study. The study is sponsored by Cue Biopharma.

Trial Registration ClinicalTrials.gov NCT03978689

Ethics Approval This study was approved by Ethics and Institutional Review Boards (IRBs) at all study sites; IRB reference numbers: DF/HCC IRB # 19-374 (Massachusetts General Hospital), HRPO # 201905108 (Washington University School of Medicine), IRB 191714 (Vanderbilt University Medical Center Vanderbilt-Ingram Cancer Center), Advarra Pro00037736 (Moffitt Cancer Center), IRB(IRB01# 20-073) (Memorial Sloan Kettering Cancer Center), 2019-087 (Karmanos Cancer Institute), WIRB IRB00112341(Winsip Cancer Institute/Emory University), WIRB 2000262908 (Yale Cancer Center), WIRB STUDY00008948 (University of Washington, Seattle ), WIRB 1908869642 (University of Arizona Cancer Center, IRB 20-073 (Memorial Sloan Kettering Cancer Center), 2019-0578 (The University of Texas MD Anderson Cancer Center), IRB 32744 (Stanford University School of Medicine).

REFERENCE


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0354

FIRST-IN-HUMAN PHASE I STUDY OF NKTR-255 IN PATIENTS WITH RELAPSED/REFRACTORY HEMATOLOGIC MALIGNANCIES

1Nina Shah*, 2Alan Tan, 3Liuha Budde, 4Craig Hofmeister, 5Andrew Cowan, 6Haiden Saeed, 7Jing Ye, 8Mitchell Cairo, 9David Rizzieri, 10Gregory Orloff, 11Xue Snow Ge, 12Zachary Lee, 13Neha Dixit, 14Wildaliz Nieves, 15Mona Vimal, 16Hajin Ma, 17Takahiro Miyazaki, 18Mary Tagliaferri, 19Jonathan Zalevsky, 20Nina Shah*, 2Alan Tan, 3Lihua Budde, 4Craig Hofmeister, 5Andrew Cowan, 6University of California San Francisco, San Francisco, CA, USA; 7Rush University Medical Center, Chicago, IL, USA; 8City of Hope Comprehensive Cancer Center, Duarte, CA, USA; 9Wishful Cancer Institute of Emory University, Atlanta, GA, USA; 10University of Washington, Seattle, WA, USA; 11Memorial Sloan Kettering Cancer Center and Research Institute, Lutz, FL, USA; 12University of Michigan, Ann Arbor, MI, USA; 13New York Medical Center, Valhalla, NY, USA; 14Duke University School of Medicine, Durham, NC, USA; 15Virginia Cancer Specialists, Fairfax, VA, USA; 16Nektar Therapeutics, San Francisco, CA, USA; 17The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Background NKTR-255, an investigational IL-15Rα-dependent polymer-conjugated recombinant human IL-15 (rhIL-15) agonist, maintains the full spectrum of IL-15 biology and provides sustained pharmacodynamic (PD) responses without the need for daily dosing. NKTR-255 engages IL-15Rα and IL-2/IL-15Rβy leading to natural killer (NK) and CD8+ T-cell expansion, proliferation and activation. In preclinical studies, NKTR-255 enhanced antibody-dependent cellular cytotoxicity (ADCC) of each of daratumumab, rituximab, trastuzumab and cetuximab, resulting in synergistic anticancer activity. This ongoing phase 1 trial (NCT04136756) evaluates NKTR-255 in patients with hematologic malignancies.

Methods Heavily pretreated patients with relapsed/refractory multiple myeloma (MM) or non-Hodgkin lymphoma (NHL) received escalating doses of NKTR-255 intravenously q3w. Patients were observed for 3 weeks following the first NKTR-255 dose for dose-limiting toxicity (DLT). Preliminary safety, PK, and PD were evaluated in all patients and bone marrow biopsy was evaluated in one patient. NKTR-255-mediated activation of the immune system was assessed by flow cytometry and plasma cytokine analysis.

Results As of June 25, 2020, 4 patients were dosed (1.5 μg/kg: 3 patients; 3 μg/kg: 1 patient). NKTR-255 was well tolerated. Most common treatment-related adverse events (AEs): flu-like symptoms, muscle stiffness, and myalgia. One Grade 3 event (pyrexia) was reported, resolving <24 hours with over-the-counter medications. No NKTR-255-related DLTs or serious AEs occurred. Clinical activity was observed in 2/4 patients (NHL and MM). The NHL patient achieved reduced metabolic activity in all prespecified target lesions after 5 cycles. The MM patient achieved stable disease after 3 cycles on NKTR-255 monotherapy. This 63 y/o male had high-risk recurrent stage III MM with complex cytogenetics (relapsing after VRd, DRd, and carfilzomib plus dexamethasone). Preliminary PK analyses (1.5 μg/kg) showed mean half-life of >24 hours with no accumulation following repeat dosing. NKTR-255 at 1.5 μg/kg expanded NK and CD8+ T-cells in peripheral blood, with peak fold-changes in cell numbers of ~5-fold and ~3-fold respectively, maintained during the cycle. Bone marrow biopsy data indicate 7-fold (cycle 5) to 13-fold (cycle 9) increase from baseline in the CD56+ population in the MM patient. Proliferative capacity for NK and CD8+ T-cells was maintained across multiple treatment cycles. NKTR-255-dependent changes in inflammatory cytokines, including MCP-1 and IL-6, peaked by 6 hours and resolved to baseline levels by 24 hours, further supporting the safety of NKTR-255.

Conclusions In heavily pretreated patients with hematologic malignancies, NKTR-255 is biologically active and demonstrated sustained increases in NK and CD8+ T-cells. NKTR-255 was well tolerated, with minimal treatment-related toxicities. Our preclinical and preliminary clinical data provide evidence of synergistic effects enhancing ADCC and support continued dose escalation of NKTR-255.

Trial Registration NCT04136756

Ethics Approval The study was approved by the institutional review board of each participating site.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0355

Abstract 356 Table 1 Data summary of results

<table>
<thead>
<tr>
<th>Study Participants (n=19)</th>
<th>Clinical Response</th>
</tr>
</thead>
<tbody>
<tr>
<td># Participants</td>
<td>SD</td>
</tr>
<tr>
<td>Immune infiltrates N=13 (%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POL+</th>
<th>CD4+</th>
<th>CD8+</th>
<th>Positive ELISpot Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (66)</td>
<td>5 (71)</td>
<td>1 (13)</td>
<td></td>
</tr>
</tbody>
</table>