SAFETY AND PHARMACODYNAMIC ACTIVITY OF ATOR-1015, A CTLA-4 X OX40 BISPECIFIC ANTIBODY, IN A PHASE 1 DOSE ESCALATION STUDY OF PATIENTS WITH ADVANCED SOLID MALIGNANCIES

Jeffrey Yakchim*, 1Gustav Ullenhammer, 1Ana Carneiro, 1Dorte Nielsen, 2Kristoffer Staal Rohberg, 3Anne Mansson Kvamhannam, 4Lena Schultz, 5Erika Bägeman, 5Erica Bägeman, 6Camilla Wennstroem, 6Charlotte Russell, 6Charlotte Russell, 7Karolinska Institutet, Stockholm, Sweden; 8Uppsala University Hospital, Uppsala, Sweden; 9Skane University Hospital and Lund Uni, Lund, Sweden; 10Herlev and Gentofte Hospital, Herlev, Denmark; 11Rigshospitalet, University Hospital, Copenhagen, Denmark; 12Alligator Bioscience AB, Lund, Sweden

Background ATOR-1015 is a human CTLA-4 x OX40 bispecific antibody developed as a first in class tumor-localizing CTLA-4 antibody for improved efficacy and reduced toxicity.

Methods The study (NCT03782467) is a first-in-human dose escalation study followed by an expansion part. In the dose escalation patients with refractory solid malignancies are enrolled and the expansion part will enroll patients with cutaneous or mucosal malignant melanoma. Patients receive ATOR-1015 intravenously Q2W as a single agent until confirmed progressive disease, unacceptable toxicity or withdrawal of consent. Intra-patient dose escalation is allowed. The primary objective is to assess the safety and tolerability of ATOR-1015. Secondary objectives include pharmacokinetics, immunogenicity, pharmacodynamics, and clinical efficacy as assessed by iRECIST. Pharmacodynamic analyses include serum cytokines, immunophenotyping of peripheral blood mononuclear cells. Tumor biopsies before and after ATOR-1015 will be analyzed.

Results As of June 26, 2020, 23 patients have been exposed to ATOR-1015. The median age of the patients is 54 years (range 40–72). Patients have received a median of 5 prior lines of therapy (range 1–16). Most common cancer type is colorectal cancer. Dose levels from 0.043 mg to 600 mg have been evaluated and declared safe. Dose escalation is ongoing, and currently two patients have been enrolled at 750 mg dose level. The median time on study was 8.4 weeks (range 0.1–34.3). Five patients are on study and 18 patients have discontinued. Reasons for discontinuation included clinical deterioration (n=10), disease progression (n=5), death due to disease progression (n=2), and investigator’s decision (n=1). Twelve of the 23 patients experienced a drug-related adverse event (AE). Two patients experienced a grade 3 drug-related AE, for all other patients AEs were grade 1 or 2. Infusion-related reactions (IRR) were reported in nine patients. Predominant symptoms of the IRR were chills, rash and pain. Potentially immune-related AEs grade 1 were reported in three patients: one patient had rash, one vitiligo, and one exanthema and eczema. No dose-limiting toxicities have occurred. Best response is stable disease. Pharmacokinetic data show dose proportional kinetics up to 600 mg. Preliminary biomarker analysis shows pharmacodynamic activity of ATOR-1015.

Conclusions ATOR-1015 has been safe and well-tolerated up to 600 mg. Currently 750 mg is under evaluation. Best response is stable disease. Following the dose escalation phase, an expansion cohort for patients with advanced malignant melanoma will be initiated.

Ethics Approval The study is approved by the institutional review board of each participating site.


PHARMACODYNAMIC ASSESSMENT OF A NOVEL FAP-TARGETED 4-1BB AGONIST, ADMINISTERED AS SINGLE AGENT AND IN COMBINATION WITH ATEZOLIZUMAB TO PATIENTS WITH ADVANCED SOLID TUMORS

Victor Moreno*, 1Tatiana Hernandez, 2Ignacio Melero, 2Miguel Sammamed, 2Iben Spanggaard, 3Kristoffer Staal Rohberg, 3Josep Tabernero, 3Anaïla Azaro, 3Maria Martinez Garcia, 4Alejo Rodriguez-Vidu, 5Christina Claus, 6Florian Heil, 6Oliver Kieter, 6Oliver Grimmel, 6Maria Canamero, 6Jose Duarte, 7Alexandra-Cristina Nica, 7Isakov Davydov, 8Michael Hettich, 9Chia-Huey Ooi, 10Christian Heichinger, 10Ernesto Guarin, 11Radoslav Helbaj, 12Tamara Tanos, 12Eveline Nueesch, 12Maurizio Ceppi, 12Irene Moreno, 12Emiliano Calvo.

1Hospital Fundación Jiménez Díaz, Madrid, Spain; 2Clínica Universidad de Navarra, Pamplona, Spain; 3Rigshospitalet University Hospital, Copenhagen, Denmark; 4Vall d’Hebron University Hospital, Barcelona, Spain; 5Hospital del Mar-CIBERONC, Barcelona, Spain; 6Roche pRED, Zürich, Switzerland; 7Centro Integral Oncológico Clara Campal, Madrid, Spain

Background RO7122290 (RO) is a bispecific antibody-like fusion protein that simultaneously targets FAP, abundantly expressed by cancer-associated fibroblasts in most solid tumors, and 4-1BB, transiently expressed on activated T cells. Pre-clinical experiments revealed strong intra-tumoral CD8+ T cell infiltration in FAP-positive tumors, cytokines induction and significant anti-tumor activity mediated by RO (signal 2 of T cell activation), upon TCR/CD3 engagement (signal 1) or in combination with atezolizumab (ATZ). In this first-in-human study, the pharmacodynamic (PD) effects of RO were assessed, both as single agent (SA) (Part A) and in combination with ATZ (Part B).

Methods Pts with advanced and/or metastatic solid tumors were eligible for this ongoing Phase 1/1b trial (EUDRACT 2017-003961-83). RO was administered intravenously, weekly (QW) at escalating dose levels (DLs). In Part A, 62 pts were treated at 13 DLs of RO, dose range 5–2000 mg. In Part B, 39 pts were treated at 8 DLs of RO, dose range 45–2000 mg, with ATZ 1200 mg Q3W. Secondary biomarker objective was characterization of PD effects in tumor tissue and blood. The endpoints were change from baseline in intra-tumoral density (cell/mm3) and proliferation (Ki67) of CD8+ T cells measured by immunohistochemistry (IHC), and change in...
activation (4-1BB) and proliferation (Ki67) of peripheral CD8+ T cells measured by flow cytometry. Exploratory objectives were characterization of PD effects in plasma/serum and measurement of intra-tumoral immune activation. The endpoints were change in peripheral cytokines (TNF-alfa, IFN-gamma, IL-6) and soluble(s) factors (sCD25, s4-1BB) concentration measured by ELISA, and intra-tumoral changes in gene expression measured by RNAseq.

Results In the periphery, we observed transient expression of 4-1BB on CD4+ and CD8+ T cells, along with secretion of s4-1BB and inflammatory cytokines, suggesting 4-1BB targeting and potent T cell activation. The concomitant induction of proliferating T cells indicated the potential association to priming and formation of tumor-reactive T cells. In the tumor, we detected increased CD8+ T cells infiltration and proliferation, in both Parts. Proliferating CD8+ T cells increased in both tumor nests and surrounding stroma, with a preferential accumulation in the latter. RNAseq analysis revealed induction of 4-1BB, PD-1 and IFN-gamma, indicating intra-tumoral T cells activation in Part B.

Conclusions PD activity was consistent with the postulated MoA, confirming RO to be a potent tumor-targeted 4-1BB agonist in the clinical setting. Our observations suggest that RO can synergize with endogenous T cell receptor stimulation, both as SA and in combination with ATZ.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0370

THE ASSOCIATION OF THE GUT MICROBIOTA AND CLINICAL RESPONSE TO IMMUNE CHECKPOINT INHIBITORS IN PATIENTS WITH ADVANCED CANCER

Cheng-Hsun Chiu, Chih-Yu Tsai, Yu-Fen Lin, John Chang*, Chiao-En Wu, Yuan-Ming Yeh, Yung-Chi Shen, Ming-Mo Hou, Jia-Juan Hsieh, John Chang. Chang Gung Memorial Hospital, Taoyuan, Taiwan, Province of China

Background The gut microbiome is associated with the immune function of the host. No consensus has been reached regarding to the association between microbiota and the treatment response to immune checkpoint inhibitor (ICI). This study is designed to explore the relationship between gut microbiome composition and clinical outcomes in patients with advanced cancer treated with ICI.

Methods Fifty patients were enrolled in this study. Fecal samples were collected at the baseline, 3 months after treatment and when disease progression was noted. To explore the gut microbiota as a potential predictive biomarker for immunotherapy, 16S ribosome RNA gene sequencing was used to analyze the gut microbiota profiles. Peripheral immunity parameters were determined by multicolor flow cytometry and cytokine array. Alpha-diversity of healthy individuals was used as a cut-off.

Results When subgrouping patients into benefiter and non-benefiter according to the clinical response assessed, non-benefiter patients harbored lower alpha-diversity of gut microbiome at the baseline. Patients with low microbiome diversity had poor progression-free survival (HR=0.569, p=0.219) when compared to those with high diversity. Compositional difference was observed between the two groups as well with the enrichment of g. Fusobacterium in benefiter whereas f. Veillonella ceae enriched in non-benefiter. Analysis of immune responses using multicolor flow cytometry revealed that patients with a high diversity of gut microbiota had decreased CD4+/CD25+ /FoxP3+ regulatory T cells in response to ICI. After ICI treatment the CD4/CD8 ratio of PBMCs was decreased in clinical benefiter. The serum MIF and CXCL12 levels were decreased in clinical benefiter.

Conclusions Low alpha diversity of the gut microbiota is associated with poor response to immune checkpoint inhibitors in patients with advanced cancer. Further confirmation in the clinical trials is warranted.

Acknowledgements The authors thank all the members of the Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, for their invaluable help. The study and data collection processes were funded by the grants to John WC Chang from Chang Gung Memorial Hospital (Grant No. CIRPG3H0061–2).

Ethics Approval The study was approved by the Institutional Review Board of Chang Gung Memorial Hospital, approval number 20180126B0.

Consent Written informed consent was obtained from the patients for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0371

SINGLE-AGENT ANTI-TUMOR ACTIVITY IN RELAPSED/REFRACTORY SOLID TUMORS: INTERIM DATA FROM THE PHASE 1 SOLID TUMOR TRIAL OF AMV564, A NOVEL T-CELL ENGAGER

1 Sarina Piha-Paul*, 2 Alexander Starodub, 3 Raghad Karim, 4 Michael Shafique, 5 Gabriel Tinoco Suarez, 6 Curtis Ruegg, 7 Victoria Smith, 8 Patrick Chun. 1 MD Anderson Cancer Center, Houston, TX, USA; 2 Riverside Peninsular Cancer Institute, Goshen, IN, USA; 3 NEX顿 Oncology, San Antonio, TX, USA; 4 Moffitt Cancer Center, Tampa, FL, USA; 5 The Ohio State University, Columbus, OH, USA; 6 Amphivena Therapeutics, San Francisco, CA, USA

Background Overcoming the immune-suppressive tumor environment induced by myeloid-derived suppressor cells (MDSC) is a major challenge in immune therapy. AMV564 is a potent conditional agonist that engages T cells to selectively deplete target cells such as MDSC while promoting T cell polarization and activation. Whereas CD33 plays an insignificant role in differentiated myeloid cells, CD33 signaling in immature myeloid cells promotes expansion of MDSC and production of immune-suppressive factors. Preferential binding of AMV564 to areas of high CD33 density enables selective targeting of MDSC. Ex vivo data as well as data from a clinical trial in acute myeloid leukemia (NCT03144245) demonstrate the ability of AMV564 to selectively deplete MDSC while sparing monocytes and neutrophils.

Methods NCT04128423 is a multi-center Phase 1 study to determine the safety and tolerability, define the maximum-tolerated dose and pharmacodynamics. Secondary endpoints include assessment of pharmacokinetics and pharmacodynamics.

Results As of June 30, 2020, 11 patients have been dosed across 3 dose cohorts (15 mcg – 75 mcg). The tumor types enrolled were: colorectal (n=2), GE junction (n=2), pancreatic (n=2), squamous cell carcinoma (n=2), small intestine, ovarian, and endometrial cancer. AMV564 has been well tolerated with no dose-limiting toxicities. The most common