Results N/A

Conclusions N/A

Ethics Approval The study was approved by Dartmouth-Hitchcock, Norris Cotton Cancer Center Ethics Board, approval number IRB00012031. The study was approved by Sarah Cannon Cancer Research Institute, approval number IORG0000689

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0392

Abstracts

FIRST-IN-HUMAN PHASE 1/2A STUDY OF THE NOVEL NONFUCOSYLATED ANTI-CTLA-4 MONOCLONAL ANTIBODY BMS-986218 ± NIVO MAB IN ADVANCED SOLID TUMORS: INITIAL PHASE 1 RESULTS

1Claire Friedman, 2Paolo Ascienzo, 3Diwakar Davor, 4Mark O’Hara, 5Ronnie Shapira-Frommer, 6Matthew Dallos, 7Vivek Khemka, 8Lee James, 9Bruce Fischer, 10Shilpa Desmes, 11Li Li, 12Martin Kozicki, 13Palanikumar Ravindran, 14Ke Xu, 15Georgia Kolia, 16Jacqueline Shoukry, 17Mona Yunan, 18Ashish Massey, 19Martin Gutierrez. 2Memorial Sloan Kettering Cancer Center, New York, NY, USA; 3Istituto Nazionale Tumori IRCCS Fondazione, Napoli, Italy; 4University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 5University of Pennsylvania, Philadelphia, PA, USA; 6Sheba Medical Center, Tel HaShomer, Israel; 7Columbia University Medical Center, New York, NY, USA; 8Bristol Myers Squibb, Lawrenceville, NJ, USA; 9Hackensack University Medical Center, Hackensack, NJ, USA

Background CTLA-4 pathway blockade with ipilimumab (IPI) ± nivolumab (NIVO; anti–PD-1) is an effective treatment for several cancers. A nonfucosylated version of IPI, BMS-986218, was developed to increase the effects of CTLA-4 blockade and enhance intratumoral regulatory T-cell depletion via its increased affinity for Fcγ receptors (FcγR, CD16) on natural killer T cells and macrophages, resulting in enhancement of antibody-dependent cellular cytotoxicity. Preclinical data supported the mechanism of action of BMS-986218 and demonstrated greater antitumor activity in an MC38 tumor model vs IPI. 1 Here, we present initial results from the first-in-human phase 1/2a trial of BMS-986218 ± NIVO in previously treated patients with advanced cancer (NCT03110107).

Methods Patients with ≥1 prior therapy received BMS-986218 2–70 mg intravenously Q4W. Safety, tolerability, pharmacokinetics, and pharmacodynamics were evaluated.

Results As of December 12, 2019, 65 patients (median age, 61 years [range, 24–85 years]) received BMS-986218 monotherapy. TRAEs occurred in 52% of patients; most were grade 1–2. The most common (≥10%) TRAEs (any grade; grade 3) were pruritus (12%; 0%) and diarrhea (11%; 3%). Eight patients (12%) had grade 3 TRAEs; most resolved with protocol-defined management. No grade 4 TRAEs were reported; 1 grade 5 TRAE (pneumonitis; 2 mg) occurred. Seven patients (11%) discontinued treatment due to TRAEs; 4 dose-limiting toxicities occurred. The maximum tolerated dose has not been reached. BMS-986218 exposure increased dose proportionally, and the half-life was ~2 weeks. Increased levels of serum chemokine ligands 9 and 10 and interferon-γ indicate that pharmacodynamic changes occurred at the lowest dose tested (2 mg [~0.03 mg/kg]), similar to previous findings with IPI 3 mg/kg, and at higher doses (40–70 mg [~0.06–1 mg/kg]), consistent with findings with IPI 10 mg/kg. In a subset of patients with paired biopsies, BMS-986218 was associated with an increased gene signature linked to CD8+ T-cell infiltration and inflammation. In a highly heterogeneous population, as part of dose escalation, BMS-986218 monotherapy treatment was associated with clinical activity in some patients. Updated data based on a September 2020 data cutoff will be presented.

Conclusions BMS-986218 monotherapy demonstrated an acceptable safety profile and signs of clinical benefit in this heterogeneous patient population with select advanced cancers. Preliminary pharmacodynamic activity was consistent with enhanced effects of CTLA-4 blockade. Data from continuing dose escalation of BMS-986218 ± NIVO along with preclinical results provide support for ongoing monotherapy expansions and for BMS-986218 ± NIVO expansions in patients with advanced cancer.

Acknowledgements The authors acknowledge Dr Charles Drake while at Columbia University Medical Center, New York, NY, USA, for his contributions to the study.

Trial Registration NCT03110107

Ethics Approval This study was approved by the WCG Independent Review Board, approval number 20170464

REFERENCE


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0393

INTERLEUKIN-8–NEUTRALIZING MONOCLONAL ANTIBODY BMS-986253 PLUS NIVO MAB IN BIOMARKER-ENRICHED, PRIMARILY ANTI–PD-(L)1–EXPERIENCED PATIENTS WITH ADVANCED CANCER: INITIAL PHASE 1 RESULTS

1Diwakar Davor, 2Matteo Simonelli, 3Martin Gutierrez, 4Emiliano Calvo, 5Jason Melear, 6Sarina Piha-Paul, 7Donald Richards, 8Matthew Dallos, 9Sanaki Parameswaran, 10Vinit Kumar, 11Xiaochen Zhao, 12Sanantu Dutta, 13Ignacio Meleiro. 2University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 3Humanitas University; Humanitas Cancer Center – Humanitas Research Hospital, Milan, Italy; 4Hackensack University Medical Center, Hackensack, NJ, USA; 5START Madrid-CIOCC, Centro Integral Oncologico Clara Camp, Madrid, Spain; 6Texas Oncology, US Oncology Research, Austin, TX, USA; 7The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; 8Columbia University Medical Center, New York, NY, USA; 9Bristol Myers Squibb, Princeton, NJ, USA; 10Universidad de Navarra, Pamplona, Spain

Background Interleukin 8 (IL-8) is a C-X-C chemokine that exerts promotumorigenic effects in the tumor microenvironment, including recruiting immunosuppressive PMN-MDSCs and promoting angiogenesis. 1–3 Elevated serum IL-8 (sIL-8) is a negative prognostic indicator in patients with solid tumors and may have predictive value in patients treated with immunotherapies. 2 4 5 BMS-986253, a fully human-sequence IgG1x anti–IL-8 monoclonal antibody, binds IL-8 and prevents signaling through CXCR1/CXCR2 and has been shown to be safe in patients with advanced cancers. 6 We present initial results of BMS-986253 + NIVO from a phase 1/2a trial in patients with advanced cancers who had detectable sIL-8 levels, the majority of whom had progressed on/after prior anti–PD-(L)1 (NCT03400332).

Methods During safety evaluation/dose exploration, patients with advanced metastatic solid tumors (melanoma, NSCLC, SCCHN, RCC, or UCC) and detectable sIL-8 (>10 pg/mL at screening) received BMS-986253 600 (n=16), 1200 (n=15), or 2400 mg (n=18) Q4W, or 1200 (n=12) or 2400 mg (n=59) Q2W, + NIVO 480 mg intravenously Q4W. Safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity were evaluated (investigator-assessed, RECIST v1.1).

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0394