Results N/A

Conclusions N/A

Ethics Approval The study was approved by Dartmouth-Hitchcock, Norris Cotton Cancer Center Ethics Board, approval number IRB00012031. The study was approved by Sarah Cannon Cancer Research Institute, approval number IORG0000689

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0392

Abstracts

FIRST-IN-HUMAN PHASE 1/2A STUDY OF THE NOVEL NONFUCOSYLATED ANTI-CTLA-4 MONOCLONAL ANTIBODY BMS-986218 ± NIVOLUMAB IN ADVANCED SOLID TUMORS: INITIAL PHASE 1 RESULTS

1Claire Friedman1, 2Paolo Asciento, 3Diwakar Davar, 4Mark O’Hara, 5Ronnie Shapira-Frommer, 6Matthew Dallos, 7Vivek Khemka, 8Lee James, 9Bruce Fischer, 10Shilpa Desmes, 11Li Li, 12Martin Kozicki, 13Palanikumar Ravindran, 14Ke Xu, 15Georgia Kolla, 16Jacqueline Shoukry, 17Mona Yunan, 18Ashish Massey, 19Martin Gutierrez. 1Memorial Sloan Kettering Cancer Center, New York, NY, USA; 2Istituto Nazionale Tumori IRCCS Fondazione, Napoli, Italy; 3University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 4University of Pennsylvania, Philadelphia, PA, USA; 5Sheba Medical Center, Tel HaShomer, Israel; 6Columbia University Medical Center, New York, NY, USA; 7Bristol Myers Squibb, Lawrenceville, NJ, USA; 8Hackensack University Medical Center, Hackensack, NJ, USA

Background CTLA-4 pathway blockade with ipilimumab (IPI) ± nivolumab (NIVO; anti–PD-1) is an effective treatment for several cancers. A nonfucosylated version of IPI, BMS-986218, was developed to increase the effects of CTLA-4 blockade and enhance intratumoral regulatory T-cell depletion via its increased affinity for Fc receptors (FcγR, CD16) on natural killer T cells and macrophages, resulting in enhancement of antibody-dependent cellular cytotoxicity. Preclinical data supported the mechanism of action of BMS-986218 and demonstrated greater antitumor activity in an MC38 tumor model vs IPI. Here, we present initial results from the first-in-human phase 1/2a trial of BMS-986218 ± NIVO in previously treated patients with advanced cancer (NCT03110107).

Methods Patients with ≥1 prior therapy received BMS-986218 2–70 mg intravenously Q4W. Safety, tolerability, pharmacokinetics, and pharmacodynamics were evaluated.

Results As of December 12, 2019, 65 patients (median age, 61 years [range, 24–85 years]) received BMS-986218 monotherapy. TRAEs occurred in 52% of patients; most were grade 1–2. The most common (≥10%) TRAEs (any grade; grade 3) were pruritus (12%; 0%) and diarrhea (11%; 3%). Eight patients (12%) had grade 3 TRAEs; most resolved with protocol-defined management. No grade 4 TRAEs were reported; 1 grade 5 TRAE (pneumonitis; 2 mg) occurred. Seven patients (11%) discontinued treatment due to TRAEs; 4 dose-limiting toxicities occurred. The maximum tolerated dose has not been reached. BMS-986218 exposure increased dose proportionally, and the half-life was ~2 weeks. Increased levels of serum chemokine ligands 9 and 10 and interferon-γ indicate that pharmacodynamic changes occurred at the lowest dose tested (2 mg [~0.03 mg/kg]), similar to previous findings with IPI 3 mg/kg, and at higher doses (40–70 mg [~0.06–1 mg/kg]), consistent with findings with IPI 10 mg/kg. In a subset of patients with paired biopsies, BMS-986218 was associated with an increased gene signature linked to CD8+ T-cell infiltration and inflammation. In a highly heterogeneous population, as part of dose escalation, BMS-986218 monotherapy treatment was associated with clinical activity in some patients. Updated data based on a September 2020 data cutoff will be presented.

Conclusions BMS-986218 monotherapy demonstrated an acceptable safety profile and signs of clinical benefit in this heterogeneous patient population with select advanced cancers. Preliminary pharmacodynamic activity was consistent with enhanced effects of CTLA-4 blockade. Data from continuing dose escalation of BMS-986218 ± NIVO along with preclinical results provide support for ongoing monotherapy expansions and for BMS-986218 + NIVO expansions in patients with advanced cancer.

Acknowledgements The authors acknowledge Dr Charles Drake while at Columbia University Medical Center, New York, NY, USA, for his contributions to the study.

Trial Registration NCT03110107

Ethics Approval This study was approved by the WCG Independent Review Board, approval number 20170464

REFERENCE


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0393

INTERLEUKIN-8-NEUTRALIZING MONOCLONAL ANTIBODY BMS-986253 PLUS NIVOLUMAB (NIVO) IN BIOMARKER-ENRICHED, PRIMARILY ANTI–PD-(L)1–EXPERIENCED PATIENTS WITH ADVANCED CANCER: INITIAL PHASE 1 RESULTS

1Diwakar Davar, 2Matteo Simonelli, 3Martin Gutierrez, 4Emiliano Calvo, 5Jason Melear, 6Serina Piha-Paul, 7Donald Richards, 8Matthew Dallos, 9Sanaki Parameswaran, 10Vinit Kumar, 11Xiaochen Zhao, 12Santanu Dutta, 13Ignacio Meleiro. 1University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 2Humanitas University; Humanitas Cancer Center – Humanitas Research Hospital, Milan, Italy; 3Hackensack University Medical Center, Hackensack, NJ, USA; 4START Madrid–OCCC, Centro Integral Oncológico Clara Campal, Madrid, Spain; 5Texas Oncology, US Oncology Research, Austin, TX, USA; 6The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; 7University of Pittsburgh Medical Center, New York, NY, USA; 8Bristol Myers Squibb, Princeton, NJ, USA; 9Universidad de Navarra, Pamplona, Spain

Background Interleukin 8 (IL-8) is a C-X-C chemokine that exerts protumorigenic effects in the tumor microenvironment, including recruiting immunosuppressive PMN-MDSCs and promoting angiogenesis.1–3 Elevated serum IL-8 (sIL-8) is a negative prognostic indicator in patients with solid tumors and may have predictive value in patients treated with immunotherapies.2,4,5 BMS-986253, a fully human-sequence IgG1 anti–IL-8 monoclonal antibody, binds IL-8 and prevents signaling through CXCR1/CXCR2 and has been shown to be safe in patients with advanced cancers.3 We present initial results of BMS-986253 + NIVO from a phase 1/2a trial in patients with advanced cancers who had detectable sIL-8 levels, the majority of whom had progressed on/after prior anti–PD-(L)1 (NCT03400332).

Methods During safety evaluation/dose exploration, patients with advanced metastatic solid tumors (melanoma, NSCLC, SCCHN, RCC, or UCC) and detectable sIL-8 (>10 pg/mL at screening) received BMS-986253 600 (n=16), 1200 (n=15), or 2400 mg (n=18) Q4W, or 1200 (n=12) or 2400 mg (n=59) Q2W, + NIVO 480 mg intravenously Q4W. Safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity were evaluated (investigator-assessed, RECIST v1.1).
A FIRST-IN-HUMAN STUDY OF FS118, A TETRAVALENT BISPECIFIC ANTIBODY TARGETING LAG-3 AND PD-L1, IN PATIENTS WITH ADVANCED CANCER AND RESISTANCE TO PD-(L)1 THERAPY

1Timothy Yap*, 2Deborah Wong, 3Siwen Hu-Lieskovan, 4Kyriakos Papadopoulos, 5Michelle Morrow, 6Urszula Grabowska, 7Daniel Gliddon, 8Josefin-Beate Holz, 9Patricia LoRusso, 1MD Anderson Cancer Center, Houston, TX, USA; 2UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA; 3Huntsman Cancer Institute and Hospital, Salt Lake City, UT, USA; 4START, San Antonio, Texas, USA; 5Star Therapeutics Ltd, Cambridge, UK; 6Yale Cancer Center, New Haven, CT, USA

Background Upregulation of immune checkpoints, such as LAG-3, plays an important role in promoting resistance to anti-PD-(L)1 therapy. Targeting PD-L1 and LAG-3 using a bispecific antibody may overcome resistance to PD-L1 blockade. We report initial data from a first-in-human study evaluating FS118 in patients with advanced cancer and resistance to PD-L1 therapy.

Methods The ongoing Phase I FIH study (NCT03440437) is being conducted to evaluate safety, tolerability, immunogenicity, PK/PD and clinical activity of FS118 administered IV weekly to heavily pre-treated patients who had previously received anti-PD-(L)1 therapy for a minimum of 12 weeks. Adverse events were assessed using CTC AE v.4.03 and tumor responses assessed using RECIST v.1.1 and iRECIST. Single subject dose escalation cohorts were followed by a 3+3 ascending dose design. Three cohorts (3, 10, 20 mg/kg) were expanded to evaluate PK, PD and clinical activity. Pharmacodynamic studies examined soluble LAG-3 production and peripheral T-cell expansion.

Results Forty-three patients (median 6 lines of prior therapy, including ICB) with solid tumors received FS118 at doses from 0.8 mg up to 20 mg/kg across 8 dose levels. Weekly administration of FS118 was well tolerated and did not result in dose- or treatment-limiting toxicities. An MTD was not reached. No safety signals unexpected for the drug class of immune-checkpoint inhibitors were identified in the early study population. The majority (95%) of treatment-emergent adverse events (TEAE) considered by the Safety Review Committee (SRC) to be treatment-related were Grade 1 and 2. Grade 3 TEAEs toxicities (elevated liver enzymes) were observed in 2 patients (5%). No SAEs or deaths were attributed to FS118 treatment. Anti-drug antibodies, observed in half of patients, were typically transient in nature. The pharmacokinetic profile confirmed preclinical predictions and PD parameters included a dose-dependent increase in serum soluble LAG-3 and expansion of peripheral T cells. Long-lasting disease stabilisation (>6 months) was observed in a subset of patients with acquired resistance (defined as a CR, PR or SD ≥3 months on previous PD-(L)1 treatment), but not in patients with primary resistance. Two patients remained on FS118 treatment as of 2 Jul 2020 (duration 10 and 16 months). Retrospective IHC analysis of PD-L1 and LAG-3 co-expression in the tumor was assessed as a potential biomarker associated with clinical outcome.

Conclusions Weekly treatment with FS118 was well tolerated up to 20 mg/kg and was associated with pharmacodynamic markers of FS118 activity. Encouraging signs of clinical activity were observed in highly pre-treated patients who had acquired resistance to prior PD-(L)1 therapy. Trial Registration Registered at www.clinicaltrials.gov, NCT03440437

REFERENCE


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0394

A240