Methods Eligible pts were aged ≥18 years with an Eastern Cooperative Oncology Group performance status of 0–1. The cSCC cohorts enrolled pts with histologically confirmed metastatic or locally advanced cSCC not amenable to local therapy. The NSCLC cohort enrolled previously untreated NSCLC pts with advanced disease and a PD-L1 tumor proportion score of at least 50%. Pts received a fixed dose of 800 mg cosmidebimab administered intravenously every two weeks. Anti-tumor activity was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and were conducted every 8 weeks for the initial 32 weeks on study, and every 12 weeks thereafter.

Results As of August 2020, 114 pts (73M/41F, median age 66 years) with diverse tumor types have been enrolled and treated with cosmidebimab. Among these pts, 103 (90%) experienced ≥1 treatment-emergent adverse event (AE), 42 (37%) experienced a grade ≥3 AE, and 6 (5%) experienced a grade ≥3 drug-related AE. The most common AEs were fatigue (25%), anemia (21%), rash (18%), nausea (16%), and the most common drug-related AEs were fatigue (15%) and rash (14%). In 42 cSCC pts evaluable for response, ORR based on investigator assessment of tumor response was 55% (95% confidence interval [CI]: 39, 70), including 5 (12%) complete responses, with 20/23 (87%) responses ongoing and 10 responses ≥6 months in duration as of data cutoff. In 23 NSCLC pts evaluable for response, ORR based on investigator assessment was 44% (95% CI: 24, 65), with 5/11 (45%) responses ongoing and 10 responses ≥6 months in duration.

Conclusions Cosidebimab has a predictable and manageable safety profile and demonstrated robust clinical activity in cSCC and NSCLC pts, including durable complete and partial responses. Updated results will be presented.

Trial Registration NCT03212404

Ethics Approval The study was approved by an appropriate ethics committee for each participating institution. Informed consent was obtained for all subjects.

Consent Written informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0399

400 COUPLEDCAR T TECHNOLOGY FOR TREATING THYROID CANCER

1Xingchen Liu, 1Kehu Zhou, 2Yang Huang, 1Chengfei Pu, 2Zhiyuan Cao, 2Ruohong Zhu, 1Haiyang Tang, 3Zheng Peng Huang, 2Hang Yang, 3Xi Huang, 4Yongping Song, 5Renbin Liu, 3Zhao Wu, 2Lai Xiao, 3Lai Xiao, 1Zhenghua University, Shanghai, China; 2SUN YAT-SEN University, Guangzhou, China; 3Innovative Cellular Therapeutics, Shanghai, China

Background Chimeric antigen receptor modified T cells (CAR T) have demonstrated remarkable clinical efficacy in the treatment of B cell malignancies and multiple myeloma. Significant challenges restrict their application across solid tumors due to multiple obstacles, including the lack of robust in vivo CAR-T cell expansion and persistence, the immunosuppressive tumor microenvironment, and tumor escape due to heterogeneous tumor cell composition with a potential loss of the targeted tumor antigen. To address these difficulties, we generated CAR T cells using a novel CoupledCAR® technology. Specifically, we engineered CoupledCAR T cells with lentiviral vectors encoding an anti-thyroid stimulating hormone receptor (TSHR) CAR molecule. Immunohistochemistry (IHC) results showed that TSHR was highly expressed in thyroid cancer cells making it an ideal tumor-specific target antigen. In vitro co-culture experiments showed that TSHR CAR T cells specifically recognized and subsequently killed TSHR-positive tumor cells. Animal model experiments showed that TSHR CAR T cells inhibited the proliferation of TSHR-positive tumor cells.

Methods We designed a ‘CoupledCAR’ lentivirus vector containing a single-chain variable fragment (scFv) targeting human TSHR. The lentivirus was produced by transfecting HEK-293T cells with ‘CoupledCAR’ lentiviral vectors and viral packaging plasmids. Patient’s CD3 T cells were cultured in X-VIVO medium containing 125U/mL interleukin-2 (IL-2), and transduced with ‘CoupledCAR’ lentivirus at certain MOI. Transduction efficiency and was evaluated at 7 to 9 days after ‘CoupledCAR’ lentivirus transduction, and quality controls for fungi, bacteria, mycoplasma, chlamydia, and endotoxin were performed. After infusion, serial peripheral blood samples were collected, and the expansion and the cytokine release of CART cells were detected by FACS and QPCR. The evaluation of response level for patients were performed at month 1, month 3, and month 6 by PET/CT.

Results To evaluate the clinical safety and efficacy of anti-TSHR CoupledCAR T cells on refractory or relapsed thyroid cancer, we treated refractory/relapsed post-thyroidectomy thyroid cancer patients according to an IRB approved protocol. We treated two patients using anti-TSHR CoupledCAR T cells and observed the rapid expansion of CAR T cells and enhanced the killing of tumor cells. One patient’s best response was complete remission, and the other was near complete remission. Patient Profile: Patient 1 Male, 64Y, Papillary Thyroid Carcinoma. In May 2017, Thyroid cancer was diagnosed, bilateral total thyroidectomy, and right cervical lymph node functional dissection were performed in Jun 2018, followed by iodine 131 isotope therapy. In December 2018, bilateral multiple cervical lymph nodes were enlarged, especially on the right side. In February 2019, right neck lymphadenectomy was performed. Patient 2 Female, 60Y, Thyroid Carcinoma. In Aug 2013, a ‘double lobectomy of the thyroid gland’ was performed. From Oct 2013 to Jan 2014, she received iodine 131 isotope therapy. In Sep 2014, she was diagnosed with iodine-resistant thyroid cancer. From Sep to Jan 2016, 5 cycles of chemotherapy were performed. In Jun 2016, she enrolled in the Anlotinib experimental group. In Mar 2019, multiple metastases in both lungs and multiple enlarged lymph nodes in the mediastinum were observed. Observations and Results: Patient 1: One month after infusion (M1), the patient was evaluated as PR: lymph node metastasis became undetectable and the size of the thoracic paratracheal tumor nodules decreased significantly. Three months after infusion (M3), the patient was evaluated as CR, and the tumor tissue was substantially smaller than M1. Patient 2: M1, the patient was evaluated as PR (Partial Response): the tumor volume in the right lower lobe of the lung was reduced by approximately 67.51% (decreased from 65*55 mm to 42*39 mm). Three months after infusion (M3), compared with that before, the tumor volume was reduced by approximately 73.54% and SUV max value decreased from 14.9 to 2.8, therefore, the patient was evaluated as nCR (near complete remission).

Conclusions We show that TSHR is a good target for treating thyroid cancer, and our anti-TSHR CoupledCAR T cells are safe and effective for treating thyroid cancer. Recruitment is ongoing to evaluate the safety and efficacy of our CoupledCAR T cells. Further, since our CoupledCAR® technology is a
Background In spite of advances made in the management of patients with HER2-expressing or driven solid tumors, there remains a significant unmet need for novel approaches to improve patient outcomes. Intratumoral delivery of antitumor antibodies and immunostimulatory adjuvants such as toll-like receptor (TLR)7/8 agonists has been shown to activate tumor resident antigen-presenting cells (APCs), driving uptake, processing, and presentation of tumor neoantigens to T cells that mediate antitumor immunity. BDC-1001 is delivered systemically and has demonstrated superior preclinical biology. This novel ISAC consists of an investigational biosimilar of the humanized monoclonal antibody trastuzumab chemically conjugated to a TLR7/8 agonist with a non-cleavable linker. BDC-1001 activates human myeloid APCs in addition to retaining antibody-mediated effector functions such as antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP). Studies in pre-clinical models. Cancer Res. 2019;79 [13 Suppl]:Abstract 1559.

Methods The DRAGON trial is a multi-center, open-label, Phase 1, first-in-human (FIH), dose-escalation, and dose-expansion study to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and efficacy of SRK-181 administered by IV infusion every 3 weeks (q3w) alone and in combination with an anti-PD-(L)-1 resistant. 2