

carcinoma, melanoma, or other advanced solid tumors, to confirm the tolerability of the RP2D and to evaluate the anti-tumor activity of SRK-181 in combination with an anti-PD-(L)1 therapy. Patients in Part A2 and Part B will have previously received anti-PD-(L)1 therapy and considered non-responders to anti-PD-(L)1 therapy alone. Patients will receive SRK-181 alone or in combination with anti-PD-(L)1 until disease progression, unacceptable toxicity, or other reasons for study discontinuation. Safety, PK, PD and efficacy data will be collected and monitored throughout the study. PD effects will be assessed by measuring modulation of tumor immune cells and TGFβ pathway within the tumor microenvironment.

Results

N/A

Conclusions

An enrollment update will be provided

Trial Registration

NCT04291079

[Link](http://doi.org/10.1136/jitc-2020-SITC2020.0402)

403 EARLY RESULTS FROM A PHASE 1 STUDY TO EVALUATE SAFETY, PHARMACOKINETICS, AND EFFICACY OF AMG 404, A PROGRAMMED DEATH-1 (PD-1) ANTI-BODY, IN PATIENTS WITH ADVANCED SOLID TUMORS

1Timothy Price*, 2Sant Chawla, 3Gerald Falchuk, 4Hans Prenen, 5Navona Lugovska, 6Vivek Subbiah, 7Jose Monzon, 8Yuchi Ozawa, 9Tobias Arkenau, 10Caio Rocha Lima, 11Yasutoshi Kuboki, 12Tomohiro Nishina, 13Mun Hui, 14Erik Rasmussen, 15Hansen Wong, 16Saltanat Najmi, 17Nooshin Sadraei, 18University of Adelaide, The Queen Elizabeth Hospital Campus, CALHN, Woodville, Australia; 19Sarcoma Oncology Center, Santa Monica, CA, USA; 20Sarah Cannon Research Institute at HealthONE, Denver, Colorado, USA; 21University Hospital Antwerp, Antwerp, Belgium; 22Maria Sklodowska Cune National Research Institute of Oncology, Warsaw, Poland; 23University of MD Anderson Cancer Center, Houston, TX, USA; 24Tom Baker Cancer Centre, Calgary, Canada; 25Wakayama Medical University Hospital, Wakayama, Japan; 26Sarah Cannon Research Institute UK, London, UK; 27Wake Forest Baptist Health, Miami, FL, USA; 28National Cancer Center Hospital East, Kashiwa, Japan; 29National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan; 30Chris O’Brien Lifehouse, Camperdown, Australia; 31Amgen Inc., New York, NY, USA

Background

Enhancement of antitumor immunity through inhibition of the checkpoint PD-1 receptor has been effective in the treatment of many malignancies. AMG 404 is a monoclonal antibody (mAb) targeting PD-1. This phase 1, open-label, multicenter first-in-human study (NCT03853109) will evaluate the safety, tolerability, pharmacokinetics, and efficacy of AMG 404 monotherapy in adult patients with advanced solid tumors.

Methods

The primary study endpoint is dose-limiting toxicity (DLT) and safety; key secondary endpoints include pharmacokinetic parameters, objective response rate (assessed Q8W), duration of response, and progression-free survival. Key inclusion criteria include histologically or cytologically proven metastatic or locally advanced solid tumors not amenable to curative treatment with surgery or radiation for which standard therapies have been exhausted or not available. Prior anti-PD-(L)1 or other checkpoint inhibitors were not allowed. Five dose-finding cohorts, including 2 expansion cohorts, ranged from 3–20 patients each. AMG 404 was given until disease progression, intolerance, or consent withdrawal.

Results

As of the data cutoff date of May 4, 2020, 62 patients received at least 1 dose of AMG 404 and were included in the safety and efficacy analysis sets. Fifty percent were men, 72% had ECOG 1 performance status, median age was 62 years (range: 28–83), and 42% had ≥3 lines of prior anticancer therapy. Median AMG 404 exposure was −3 months (maximum: −12 months). No DLTs were observed. Treatment-related adverse events (TRAEs) were reported for 29 patients (47%): those reported for ≥2 patients were fatigue (n=7); hypothyroidism (n=6); increased blood thyroid stimulating hormone and nausea (n=4 each); increased aspartate aminotransferase, decreased appetite, and pyrexia (n=3 each); and increased alanine aminotransferase, arthralgia, diarrhea, and increased weight (n=2 each). AEs leading to withdrawal of AMG 404 were reported for 3 patients (5%); all were serious and considered to be not related to AMG 404. Sixteen (26%) patients died on study; no deaths were considered related to AMG 404. Preliminary pharmacokinetic results were consistent with those of other therapeutic anti-PD-1 mAbs. Three patients had a confirmed partial response (pancreatic cancer, clear cell cancer, and pleomorphic sarcoma); an additional 4 patients had one scan with a partial response and are pending a confirmatory scan (clear cell renal carcinoma, undifferentiated nasopharyngeal carcinoma, sarcomatoid carcinoma of unknown primary, and colon cancer).

Conclusions

AMG 404 is tolerable at the tested doses with no DLTs reported. All observed TRAEs are consistent with other anti-PD-1 therapies. Encouraging anti-tumor activity has been observed in heavily pretreated patients. The study is continuing enrollment into additional cohorts.

Trial Registration

NCT03853109

Ethics Approval

The study was approved by the Ethics Board of each institution involved in this study and can be produced upon request.

[Link](http://doi.org/10.1136/jitc-2020-SITC2020.0403)

404 ALX148, A CD47 BLOCKER, IN COMBINATION WITH STANDARD CHEMOTHERAPY AND ANTIBODY REGIMENS IN PATIENTS WITH GASTRIC/ GASTROESOPHAGEAL JUNCTION (GC) CANCER AND HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC)

1Keun-Wook Lee*, 2Hyun Chung, 3Won Seog Kim, 4Laura Chow, 5Nehal Lakhani, 6Wells Messersmith, 7Yung-Jue Bang, 8Patricia LoRusso, 9Philip Fanning, 10Pierre Squifflet, 11Feng Jin, 12Alison Forgie, 13Hong Wan, 14Jaume Pons, 15Sophia Randolph, 16Justin Gainor, 17Seoul National University Hospital Bundang, Gyeonggi-do, Republic of Korea; 18Yonsei Cancer Center, Seoul, Republic of Korea; 19Samsung Medical Center, Seoul, Republic of Korea; 20University of Washington, Seattle, WA, USA; 21START Midwest, Grand Rapids, Michigan, USA; 22University of Colorado Cancer Center, Aurora, CO, USA; 23Seoul National University Hospital, Seoul, Republic of Korea; 24Yale Cancer Center, New Haven, CT, USA; 25ALX Oncology Inc., Burlingame, CA, USA; 26International Drug Development Institute, Brussels, Belgium; 27Massachusetts General Hospital, Cancer Care, Boston, MA, USA

Background

CD47 is a myeloid checkpoint up-regulated by tumors to evade the anticancer immune response. ALX148 is a high affinity CD47-blocking fusion protein with an inactive Fc region designed to safely enhance anticancer therapeutics. 1

ALX148 in combination with standard chemotherapy and antibody regimens was evaluated in patients (pts) with advanced HER2-positive GC or HNSCC.

Methods

Pts with previously treated advanced HER2-positive GC or untreated advanced HNSCC received ALX148 (A) 10 mg/kg QW or 15 mg/kg QW in combination with trastuzumab (T) + ramucirumab (ram) + paclitaxel (pac) as 2nd or laterline treatment or pembrozilumab (P) + 5FU + platinum (cisplatin or carboplatin) as 1st line therapy, respectively. The primary endpoint was dose limiting toxicity (DLT). Tumor response, pharmacokinetic (PK), and pharmacodynamic (PD) markers were assessed in all pts. Preliminary data from enrolling cohorts, and follow-up data from pts with GC