CDX527–01, A PHASE 1 DOSE-ESCALATION AND EXPANSION STUDY OF THE PD-L1xCD27 BISPECIFIC ANTIBODY CDX-527 IN PATIENTS WITH ADVANCED MALIGNANCIES

Michael Yellin*, Tracey Rawls, Diane Young, Philip Golden, Laura Vitale, Li-Zhen He, Lawrence Thomas, Tibor Keiler, Cellviva Therapeutics, Hampton, NJ, USA

Background CD27 ligation and PD-1 blockade elicit complementary signals mediating T cell activation and effector function. CD27 is constitutively expressed on many mature T cells and the interaction with its ligand, CD70, plays key roles in T cell costimulation leading to activation, proliferation, enhanced survival, maturation of effector capacity, and memory. The PD-1/PD-L1 pathway is important for the regulation of immune responses, and targeting this pathway has led to significant clinical benefits in patients with cancer. CDX-527 is a novel human bispecific antibody containing a neutralizing, high affinity IgG1k PD-L1 mAb (9F4) and the single chain Fv fragment (scFv) of an agonist anti-CD27 mAb (2B3) genetically attached to the C-terminus of each heavy chain, thereby making CDX-527 bivalent for each target. Pre-clinical studies have demonstrated enhanced T cell activation by CDX-527 and anti-tumor activity of a surrogate bispecific compared to individual mAb combinations, and together with the IND-enabling studies support the advancement of CDX-527 into the clinic.

Methods A Phase I first-in-human, open-label, non-randomized, multi-center, dose-escalation and expansion study evaluating safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of CDX-527 is ongoing. Eligible patients have advanced solid tumor malignancies and have progressed on standard-of-care therapy. Patients must have no more than one prior anti-PD-1/L1 for tumor types which have anti-PD-1/L1 approved for that indication and no prior anti-PD-1/L1 for tumor types that do not have anti-PD-1/L1 approved for that indication. CDX-527 is administered intravenously once every two weeks with doses ranging from 0.03 mg/kg up to 10.0 mg/kg or until the maximum tolerated dose. The dose-escalation phase initiates with a single patient enrolled in cohort 1. In the absence of a dose limiting toxicity or any ≥ grade 2 treatment related AE, cohort 2 will enroll in a similar manner as cohort 1. Subsequent dose-escalation cohorts will be conducted in 3+3 manner. In the tumor-specific expansion phase, up to 4 individual expansion cohort(s) of patients with specific solid tumors of interest may be enrolled to further characterize the safety, PK, PD, and efficacy of CDX 527. Tumor assessments will be performed every 8 weeks by the investigator in accordance with iRECIST. Biomarker assessments will include characterizing the effects on peripheral blood immune cells and cytokines, and for the expansion cohorts, the impact of CDX-527 on the tumor microenvironment.

Results N/A

Conclusions N/A

Trial Registration NCT04440943

Ethics Approval The study was approved by WIRB for Northside Hospital, approval number 20201542

Preliminary Safety, Pharmacokinetics/Pharmacodynamics, and Antitumor Activity of XMA20717, A PD-1 x CTLA-4 BISPECIFIC ANTIBODY, IN PATIENTS WITH ADVANCED SOLID TUMORS

Elaine Shum*, Adil Daud, Matthew Reilley, Yana Najjar, John Thompson, Joaquina Baranda, Donald Harvey, Rom Leidner, Anthony Shields, Ezekia Cohen, Roger Cohen, Alain Mita, Shubham Pant, Mark Stein, Bartosz Chmielowski, Steven Hu-Lieskovan, Catherine Fleener, Ying Ding, Sowmya Chollate, Hector Avina, Solene Short, Raphael Clynes, Barbara Hickingbottom. New York University, New York, NY, USA; University of California, San Francisco, San Francisco, CA, USA; University of Virginia, Charlottesville, VA, USA; University of Pittsburgh, Pittsburgh, PA, USA; University of Washington, Seattle, WA, USA; University of Kansas, Kansas City, KS, USA; Emory University School of Medicine, Atlanta, GA, USA; Providence Cancer Institute, Portland, OR, USA; Karmanos Cancer Center, Detroit, MI, USA; University of California San Diego, La Jolla, CA, USA; Perelman School of Medicine at the University Of Pennsylvania, Philadelphia, PA, USA; Cedars-Sinai Medical Center, Los Angeles, CA, USA; MD Anderson Cancer Center, Houston, TX, USA; Columbia University, New York, NY, USA; UCLA, Los Angeles, CA, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA; Xencor, Inc., San Diego, CA, USA

Background XmAb20717 is a humanized bispecific monoclonal antibody that simultaneously targets PD-1 and CTLA-4. We report preliminary data from an ongoing, multicenter, Phase 1 study investigating the safety/tolerability, pharmacokinetics/pharmacodynamics, and clinical activity (RECIST 1.1) of XmAb20717 in patients with selected advanced solid tumors.

Methods A 3+3 dose-escalation design was used to establish a maximum tolerated (MTD)/recommended dose for evaluation in parallel expansion cohorts, including melanoma, renal cell carcinoma, nonsmall cell lung cancer (NSCLC), prostate cancer, and a basket of tumor types without an FDA-approved checkpoint inhibitor (CI; n≤20 each). XmAb20717 was administered as an infusion on Days 1 and 15 of each 28-day cycle.

Results As of 08Jul2020, 109 patients had been treated (table 1), and 30 were continuing treatment. In escalation, 6 dose levels (0.15–10.0 mg/kg) were evaluated (n=34); an MTD was not established. Expansion cohorts were initiated at 10 mg/kg (n=72), and a 15 mg/kg escalation cohort was added (n=3). T-cell proliferation was noted in peripheral blood at doses as low as 3 mg/kg and was highest at 10 mg/kg. At this dose, consistent proliferation of CD8+ and CD4+ T cells was observed, indicative of dual PD-1 and CTLA-4 checkpoint blockade (figure 1). Paired pre- and post-dosing biopsies showed increased intratumoral T-cell infiltration and IFN-γ response signatures following treatment. Grade 3/4 treatment-related adverse events (TRAEs) reported for ≥3 patients included rash (13%), transaminase elevations (7%), lipase increased (4%) [2% with amylase increased], and acute kidney injury (3%), all considered immune-related. There were 2 Grade 5 TRAEs: immune-mediated pancreatitis (in the pres-