Conclusions DuoBody-PD-L1×4-1BB demonstrated biologic activity and a manageable safety profile. Encouraging early clinical activity across different dose levels was observed in a heavily pretreated population with advanced solid tumors, including those resistant to prior immunotherapy or typically less sensitive to ICIs. Expansion cohorts of patients for whom DuoBody-PD-L1×4-1BB treatment could be relevant and biologically sound have started enrollment. Updated data will be presented.

Acknowledgements The authors thank Manish Gupta, Lei Pang, and Thomas Breuer at Genmab A/S; Alice Bexon, Alexander Muik, and Friederike Gieseke at BioNTech SE; and Zuzana Jirakova (formerly at BioNTech SE) for their valuable contributions. This trial was funded by Genmab A/S and BioNTech SE.

Trial Registration ClinicalTrials.gov; trial number: NCT03917381

Ethics Approval This trial is undertaken following full approval of the final protocol, amendments, informed consent form, applicable recruiting materials, and subject compensation programs by the Independent Ethics Committee/Institutional Review Board.

Consent Written informed consent, in accordance with principles that originated in the Declaration of Helsinki 2013, current ICH guidelines including ICH-GCP E6(R2), applicable regulatory requirements, and sponsor policy, was provided by the patients.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0412

GEN-009, A PERSONALIZED NEOANTIGEN VACCINE, ELICITS ROBUST IMMUNE RESPONSES IN INDIVIDUALS WITH ADVANCED OR METASTATIC SOLID TUMORS

Mara Shainheit *, Devin Champagne, Gabriella Santone, Syukri Shukor, Eco Bicak, Samuel Tipps, Li Xue, Thomas Davis, Jessica Flechtner. Genocea Biosciences, Cambridge, MA, USA

Background ATLAS™ is a cell-based bioassay that utilizes a cancer patient’s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).

Methods A cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polymorphism of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.

Results GEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.

Conclusions ATLAS empirically identifies stimulatory neoantigens using the patient’s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.

Acknowledgements We are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.

Trial Registration NCT03633110

Ethics Approval This study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.

REFERENCE

ENHANCING T CELL THERAPY FOR PATIENTS WITH RELAPSED/REFRACTORY WILMS TUMOR

Amy Hong *, Conrad Cruz, Maja Stanojevic, Robert Urey, Madeline Trepkowski, Emily Reynolds, Fahmida Hoq, Maria Fortiz, Haili Lang, Jeffrey Dome, Patrick Hanley, Catherine Bollard, Holly Meaney. Children’s National Hospital, Washington, DC, USA

Background Patients with relapsed or refractory Wilms tumor (WT) have poor prognoses with limited treatment options.1–3 Immunotherapy offers a promising alternative for targeted therapy but has been limited by immune evasion tactics.4–6 Adoptive cell therapy with patient-derived tumor-associated antigen-specific T cells (TAA-T) targeting 3 antigens (WT1, PRAME, and survivin) has the potential to overcome antigen loss. The objective of this phase I clinical trial is to determine the safety of administering TAA-T to patients with high-risk, relapsed/refractory solid tumors. Secondary objectives include determination of clinical efficacy and immunobiology following infusion.
Methods T cells expanded from patient peripheral blood are stimulated weekly with antigen-presenting cells expressing an overlapping peptide library spanning the tumor antigens WT1, PRAME, and survivin. Following release testing, patients are infused with TAA-T on a dose-escalation study, ranging from a dose of $1 \times 10^7/m^2$ (dose level 1) to $4 \times 10^7/m^2$ (dose level 3). Clinical and immunobiological studies performed post-infusion monitor for adverse effects and assess immune and disease responses.

Results Therapy with TAA-T was found to be safe and well-tolerated in patients with high-risk solid tumors on this dose-escalation study. A total of 18 patients have been infused with WT as the predominant diagnosis, accounting for 10 patients. We elucidated a dose-response relationship, with a prolonged median time to progression for patients treated on dose level 3 (recommended dose level [RDL]) compared to those on dose level 1 and 2 combined (5.2 vs 2.8 months, respectively) (figure 1). Patients demonstrated prolonged progression-free survival (PFS) compared to therapy received just prior to TAA-T (figure 2). Best response observed was stable disease. A majority of patients demonstrated improved anti-tumor immunity as evidenced by antigen spreading (figure 3).

Conclusions In long-term follow up, the 1-year progression-free survival (PFS) remains improved for patients treated at the recommended dose level compared to the PFS observed with therapy received immediately prior to TAA-T (29% vs 15%, respectively). Three patients are long-term (28–38 months) survivors without disease progression or further therapy. This unique immunotherapeutic has been well-tolerated without life-threatening cytokine release syndrome. To enhance TAA-T activity further in vivo, we will evaluate the safety of prescribed lymphodepletion prior to TAA-T infusion and assess anti-tumor immunity. We expect that lymphodepletion will enhance T cell persistence and expansion and recruit endogenous immune response with altered kinetics.

Ethics Approval The study was approved by the Children’s National Hospital Institutional Review Board, approval number NCT02789228.

REFERENCES