with this combination immunotherapy strategy in pancreatic cancer.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0453

454 ONCOLYTIC PARAINFLUENZA VIRUS 5 VECTOR ENHANCES NATURAL KILLER CELL KILLING OF LUNG TUMOR CELLS IN 2D AND 3D SPHEROID CULTURES

Namita Varudkar *, Jeremiah Oyer, Alicja Copik, Griffith Parks. University of Central Florida, Orlando, FL, USA

Background Natural killer (NK) cells are innate immune cells with natural cytotoxicity towards both tumor cells and virus infected cells. We have developed a particle-based method for in vitro specific expansion of NK cells that yields highly cytotoxic NK cells (PM21-NK cells). There is intense interest in the use of novel oncolytic viruses with the potential to synergize with immune cells to kill tumor cells. Here we have tested the hypothesis that infection with a tumor-selective cytopathic Parainfluenza virus 5 (PIV5-P/V) vector will enhance PM21-NK cell-mediated killing of lung cancer cells in both 2-dimensional (2D) and 3-dimensional (3D) cultures.

Methods In 2D cultures, live cell time-lapse imaging, flow cytometry and luminescence-based methods were used to assess the killing efficiency of PM21-NK cells against A549 lung tumor cells infected with PIV5-P/V. Blocking antibodies were used to evaluate different NK cell activating receptors involved in recognition of infected tumor cells. IncuCyte live cell imaging system was used to assess real time killing of 3D lung spheroids by a combination of NK cells and PIV5-P/V virus. Z-stack spheroid images were captured using Keyence microscope.

Results In 2D cultures, PM21 NK cells efficiently kill A549 cells that have been infected with P/V CPI- virus and enhance the overall rate of killing compared to uninfected cell targets. Antibody blocking showed that the viral Hemagglutinin-Neuraminidase (HN) glycoprotein and NK cell receptors NKp30, NKp46 and NK2G2D were involved in PM21-NK cell recognition of PIV5-P/V infected A549 cells. In 3D cultures of A549 tumor spheroids, PIV5-P/V infection was limited to the outer layer of the spheroid, with restricted spread of the infection to inner compartments. However, addition of PM21-NK cells to PIV5-P/V-infected spheroids resulted in killing of not only the infected surface of the spheroid but continued to the inner compartments. However, addition of PM21-NK cells to PIV5-P/V-infected spheroids resulted in killing of not only the infected surface of the spheroid but continued to the inner compartments. Therefore, NK cells may be used to control treated mice. Next, patients were treated with soluble Ephb4 in combination with anti-PD1 therapy, biopsies were obtained prior to and during the course of treatment. Biopsies were used for analysis of localized protein and RNA expression by GeoMX Digital Spatial Profiling (DSP). DSP analysis focused on tumor rich regions of interest (ROIs), adjacent stromal immune populations and microniches around vascular sites, with emphasis on sites where CD45 T-cells were observed to be surrounding capillaries within and surrounding the tumor, presumably from extravasation.

Results In preclinical mouse models, Ephb4 was found to induce several inflammatory pathways as a monotherapy including key immunomodulatory checkpoints such as PD1, PDL1, PDL2. Similarly, patients enrolled in this study were observed to have elevated T-cell infiltration in primary and secondary tumor sites, resulting in tumor mass reduction in post-treatment observations. DSP between matched samples discovered interesting differences in T-cell populations between both protein and mRNA expression. We observed evidence of tumor-debulking by decreased expression of epithelial markers such as Pan-cytokeratin and S100B within tumor ROIs, and increased infiltration within these ROIs measured by immune cell markers such as CD3 and CD163. Additionally, we observed increased GZMA expression post-treatment in perivascular regions suggestive of higher ongoing response by cells entering the tumor microenvironment. Additional analysis of localized RNA expression provided further support for activation of inflammatory cascades in post-treatment samples.

Conclusions These discoveries provide insights into the mechanism of action of Ephb4 combination therapy in bladder cancer, providing support for a role of Ephb4 acting as an adjuvant for PD1 therapy. Our results highlight the ability of Ephb4 to activate the immune system both in preclinical models and in key structures within the tumor microenvironment during combination therapy.

Trial Registration NA

Ethics Approval The studies were approved by USC IRB Protocol 4B 15-11 and IACUC Protocol 20570.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0455

456 IMPACT OF ANGIOTENSIN II PATHWAY INHIBITION ON TUMOR RESPONSE TO ANTI PD(L)1 BASED THERAPY

Julius Strauss *, Ravi Madan, Marijo Blusic, Fatima Karzai, Scott Niglio, Jason Redman, Houssein Abdul Sater, Charalampos Flosadas, Jung-Min Lee, Andrea Apolo, Seth Steinberg, Jeffrey Schlim, James Gulley, NCI, Bethesda, MD, USA

Background Angiotensin II (Ang II) has been shown preclinically to increase VEGF and TGF-β expression through AT1 receptor signaling but to decrease VEGF and TGF-β through AT2. Thus, we hypothesized that the ang II pathway might have a role in carcinogenesis and immune evasion and selectively inhibiting AT1 via angiotensin receptor blockers (ARBs)

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0455

on March 14, 2021 by guest. Protected by copyright.