activity was potent across a broad concentration spectrum and corresponded directly with B7H3 target expression. These studies represent the proof-of-concept of a novel pairing of off-the-shelf, engineered iNK cells with B7H3-directed pancreatic cancer engager molecules (TriKEs and CARs) to enhance specificity, persistence and anti-tumor function.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0470

471 PANCREATIC CANCER THERAPY BASED ON COMBINATION OF DNA VACCINATION AND PI3K GAMMA INHIBITION

Francesco Novelli*, Claudia Cucu, Cecilia Roux, Laura Conti, Roberta Curto, Gianluca Muccolo, Sara Buffamante, Silvia Brugiapaglia, Alessandro Scaglotti, Alessandra Ghigo, Paola Cappello, Emilio Hirsh, Francesco Novelli. University of Turin, Turin, Italy

Background Pancreatic ductal adenocarcinoma (PDA) is the 4th leading cause of cancer mortality in developed countries, with one of the poorest prognoses among all cancers. Although 10–15% of patients are candidates for gross total surgical resection, recurrence is frequent, and the overall 5-year survival rate is around 8%. Using a proteomic approach, we have identified alpha-Enolase 1 (ENO1) as PDA-associated antigens. We have shown that ENO1 DNA vaccination efficiently prolongs survival of engineered mice that spontaneously develop PDA (both KC and KPC mice). Recently, we have demonstrated that PI3K gamma play a critical role in PDA by driving the recruitment of myeloid derived suppressor cells into tumor tissues and it’s genetic or pharmacologic inhibition effectively inhibits PDA progression and metastasis. In this study we assessed the hypothesis that targeting myeloid derived suppressor cells, via pharmacological PI3Kgamma inhibition, synergizes with ENO1 DNA vaccination by inducing a strong and sustained immune response.

Methods KPC mice were vaccinated 4 times with ENO1 starting at 4 weeks of age; 2 weeks after the last immunization mice were treated with the PI3Kgamma inhibitor TG100-115 (2,5 mg/kg), for further two weeks. At sacrifice neoplastic lesions, immune infiltrate, T and B cell response were analyzed.

Results Mice that received ENO1 and TG100-115 therapy showed a significant decrease in tumor size compared to both ENO1 and PBS treated mice. Moreover, the analysis of pancreas tissues indicated that combined therapy induced an increased number of CD8 and F4/80 cells and a decrease of FoxP3, CD31 and NG2 cells compared to control mice. In addition, we extract mRNA from formalin fixed paraffin embedded pancreas tissues of treated mice. We observed an increase of Granzyme B in both ENO1 and ENO1+TG100-115 and a down modulation of genes involved in fibroblast and stellate cell activation suggesting a modulation of microenvironment in the combined therapy group.

Conclusions Treatment with ENO1 plus TG100-115 is able to reduce tumor size in pancreas, increase immune cell infiltration and modulate stroma cell compartment, making the therapy a suitable approach for PDA treatment.

Acknowledgements This work was supported by grants from the Italian Ministry of Health-Progetti Ricerca Finalizzata (RF-2013-02354892 to FN), Associazione Italiana Ricerca sul Cancro (5 x mille no. 12182 to FN, IG no. 15257 to FN); University of Turin-Progetti Ateneo 2014-Compagnia di San Paolo (PC-METAIMMUN- OTHER to FN and PANTHER to PC), Fondazione Ricerca Molinette Onlus, Fondazione Nadia Valsecchi.

Ethics Approval All animal experiments were approved by the University of Torino, Italian Ministry of Health and performed in accordance with EU laws in the animal facility of the Molecular Biotechnology Center (MBC). Reference no: 378/2015-PR and 597/2019-PR.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0471

472 IMMUNOPET-INFORMED SEQUENCE FOR FOCUSED ULTRASOUND-TARGETED MCD47 BLOCKADE CONTROLS GLIOMA

Natasha Shejbar*, Soumen Paul, Katellynn McCauley, Victoria Breza, Stuart Ben, G Wilson Miller, Kiel Neumann, Richard Price. University of Virginia, Charlottesville, VA, USA

Background The natural disease course for glioblastoma (GB) entails invariably grim outcomes for patients. Phagocytic immunotherapies, such as CD47 blockade (e.g. mCD47), have recently demonstrated promise for GB therapy. However, their efficacy is challenged by presence of the blood brain and tumor barriers (BBB/BBTB). Transient disruption of the BBB/BBTB via focused ultrasound (FUS) and circulating microbubbles (MB) holds promise for improving therapeutic outcomes in the context of mCD47. However, critical questions regarding the optimal protocol for therapeutic antibody delivery with FUS remain. We herein leverage immuno-PET imaging to spatiotemporally map [89Zr]-mCD47 delivery across the BBB/BBTB with FUS in an orthotopic GB model. We then use these insights to design a combinatorial paradigm for mCD47 delivery with repeat FUS BBB/BBTB-D.

Methods MRI-guided FUS BBB/BBTB-D was performed in the presence of systemically circulating MBs in mice with orthotopically implanted GL261 tumors. Mice received i.v. [89Zr]-mCD47 either without FUS, immediately prior to FUS [FUSPRE] or following FUS [FUSPOST]. Subsequently, mice underwent serial PET/CT imaging followed by terminal ex vivo assessment of antibody biodistribution. A therapeutic paradigm was then executed, wherein GL261-bearing mice received i.v. mCD47 (8 mg/kg) either as monotherapy or in combination with FUS BBB/BBTB-D over three sessions spaced three days apart. Overall survival was monitored and tumor outgrowth was tracked via serial contrast-enhanced MRI.

Results Contrast-enhanced MRI confirmed BBB/BBTB-D in GL261 tumors (figure 1A). However, PET/CT imaging revealed a lack of tumor-preferential [89Zr]-mCD47 uptake with or without FUSPRE, suggesting that neither condition improved antibody penetration over that in naïve brain (figure 1B-C). Remarkably, FUSPOST conferred superlative [89Zr]-mCD47 uptake at the site of BBB/BBTB-D, boasting between 4.3- to 6.7-fold more uptake relative to other groups (figure 1C). This elevation in uptake was sustained over the time points assessed (0–72 hours post-FUS) (figure 1C-D). Using these insights, we evaluated a rational paradigm (figure 2A) combining mCD47 with repeat FUSPOST BBB/BBTB-D (figure 2B-C) for glioma therapy. FUS-mediated delivery of mCD47 across the BBB/BBTB significantly constrained tumor outgrowth (figure 2D-E) and enhanced survival (figure 2F) in GL261-bearing mice.