Conclusions A peptide vaccine targeting B cells, CD4+ T cells, and CD8+ T cells in parallel may prove an important part of a multifaceted response to the COVID-19 pandemic. Adapting methods for predicting tumor-specific antigens, we presented a set of peptide candidates with high overlap for T and B cell epitopes and broad haplotype population coverage, with validation of immunogenicity in murine vaccine studies.

Acknowledgements The authors appreciate funding support from University of North Carolina University Cancer Research Fund (AR and BGV), the Susan G. Komen Foundation (BGV), the V Foundation for Cancer Research (BGV), and the National Institutes of Health (CCS, 1F30CA225136). We would like to thank members of the #DownWithTheCrown Slack channel for helpful discussion and feedback.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0479

Abstract 478 Figure 5 Selection of SARS-CoV-2 B cell epitope regions. (A) SARS-CoV-2 linear B cell epitopes curated from epitope mapping studies. X-axis represents amino acid position along the SARS-CoV-2 spike protein, with labeled start sites. (B) Schematic for filtering criteria of B cell epitope candidates. (C) Spike protein amino acid sequence, with overlay of selection features prior to filtering. Polymorphic residues are red, glycosites are blue, accessible regions highlighted in yellow. The receptor binding domain (RBD), fusion peptide (FP), and HR1/HR2 regions are outlined. (D) Spike protein functional regions (RBD, FP, HR1/2) amino acid sequences, with residues colored by how many times they occur in identified epitopes. Selected accessible sub-sequences of known antibody epitopes, highlighted in purple outline. (E) S protein trimer crystal structure with glycosylation, with final linear epitope regions highlighted by color.

Abstract 478 Figure 6 T cell and B cell vaccine candidates. (A) 27mer vaccine peptide sets selecting for best CD4+, CD8+, CD4+/CD8+, and B cell epitopes with HLA-I, HLA-II, and total population coverage. (B) Unified list of all selected 27mer vaccine peptides. Vaccine

Conclusions A peptide vaccine targeting B cells, CD4+ T cells, and CD8+ T cells in parallel may prove an important part of a multifaceted response to the COVID-19 pandemic. Adapting methods for predicting tumor-specific antigens, we presented a set of peptide candidates with high overlap for T and B cell epitopes and broad haplotype population coverage, with validation of immunogenicity in murine vaccine studies.

Acknowledgements The authors appreciate funding support from University of North Carolina University Cancer Research Fund (AR and BGV), the Susan G. Komen Foundation (BGV), the V Foundation for Cancer Research (BGV), and the National Institutes of Health (CCS, 1F30CA225136). We would like to thank members of the #DownWithTheCrown Slack channel for helpful discussion and feedback.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0479

Abstract 478 Figure 7 Immunogenicity of murine-compatible peptide vaccines. (A) ELISA result: peptides derived from three B cell vaccine candidate regions were coated on peptide capture plates, either in combination by overlapping core epitopes (1-2 and 3-4) or alone (5). (B) ELISpot results: splenocytes from animals vaccinated against predicted B cell epitopes (1-5) or measles peptide control (M; adapted from Obeid et al. 1995). Each point represents the average of technical triplicates, background subtracted against no-peptide control. (A&B) Colors represent adjuvant used for vaccination. P-values shown above each graph represent pair-wise Mann-Whitney U-test.
models. AMP immunogens are efficiently delivered to lymph nodes, where innate and adaptive immune responses are generated.

Methods Female, 6 to 8-week-old C57BL/6J and BALB/c mice and 37-week-old C57BL/6J mice received two or more doses of benchmark (alum or CpG) or AMP-modified vaccines, comprised of Spike RBD protein and AMP-CpG adjuvant, subcutaneously injected into the tail base in two-week intervals. Antigen was dose spared to determine if AMP-CpG would maintain the immune response. Cellular immune responses were determined via ELISpot analysis of IFNγ production by splenocytes, intracellular cytokine staining of peripheral blood and lung-resident T-cells, and flowcytometric bead array analysis of Th1/2/17 cytokines. Humoral immune responses were determined via blood serum ELISAs to determine sera antibody binding titers, and pseudoviral neutralization assays for comparison to human convalescent serum.

Results Compared to alum, AMP immunization induced 29-fold higher antigen-specific T cells which produced multiple Th1 cytokines and trafficked into lung parenchyma. Antibody responses favored Th1 isotypes (IgG2bc, IgG3) and potently neutralized Spike-2-ACE2 receptor binding, with titers >100-fold higher than the natural immune response from convalescent COVID-19 patients; responses were maintained despite 10-fold dose-reduction in Spike antigen. Both cellular and humoral immune responses were preserved in aged mice.

Conclusions ELI-005 exhibits the qualities of an optimal SARS-CoV-2 vaccine, which should (1) induce robust and durable CD8+ and CD4+ T cell responses, (2) elicit high magnitude neutralizing antibodies, (3) produce Th1 bias in the elicited antibody and T cell responses, (4) potentially expand pre-existing cross-reactive T cells, (5) enable dose-sparing of required immunogens to improve the speed and cost of broad vaccination campaigns, and (6) be efficacious in elderly populations. These advantages merit clinical translation to SARS-CoV-2 and other protein subunit vaccines.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0479

PRELIMINARY EVALUATION OF A NOVEL CORONAVIRUS VACCINE (CORVAX) USING ELECTROPORATION OF PLASMID DNA ENCODING A STABILIZED PREFUSION SARS-COV-2 SPIKE PROTEIN ALONE OR WITH TRANSFUSION OF PLASMID IL-12

1Shawn Jensen*, 2Christopher Twitty, 3Christopher Paustian, 4Madelein Laws, 1Glenna McDonnell, 1Keith Wegmann, 1Tareem Moudgil, 1Michael Afentoulis, 1Mia Han, 2Kellei Malloy Foerter, 3David Canton, 2Jack Lee, 2Blanca Nguyen, 5John Rodriguez, 3Kim Jaffe, 6Brian Piening, 1Carlo Blalock, 3Daniel O’Connor, 1Walter Urba, 1Tom Leidner, 1Traci Hilton, 1Hong-Ming Hu, 1Bernard Fox, 1Earle A. Chiles Research Institute, Portland, OR, USA; 2OncoSec Medical Incorporated, San Diego, CA, USA; 3Massachusetts General Hospital, Boston, MA, USA; 4UCI use based on age, sex, and use of non-ICI anti-cancer treatment (ICIs). As IL-12 has been shown to augment the efficacy of immunotherapy in aged mice, 1 we have initiated studies to evaluate if plasmid IL-12 (TAVO™) can similarly augment anti-CoV2 immune responses in young mice and have planned studies in aged animals.

Methods A prefusion stabilized CoV2 spike plasmid expression vector was constructed, a master cell bank generated and clinical-grade plasmid manufactured. C57BL/6 and BALB/c were vaccinated via intramuscular (IM) and/or intradermal (ID) injection followed immediately by EP of plasmids encoding the CoV2 spike protein with or without plasmid-encoded murine IL-12 on days 1 and 14 or 21. Mice were followed for >120 days to assess safety. Splenocytes and serum were harvested at different time points to interrogate virus-specific cellular responses as well anti-spike IgG1/IgG2 antibody titers. A surrogate viral neutralization test (sVNT) assessed serum blockade of soluble hACE2R binding to immobilized CoV2 spike.

Results Preliminary data shows that EP of CORVax alone or combined with IL-12 was safe. EP of CORVax was able to elicit anti-Spike IgG antibodies (IC50 = 1/2112), as well as IgG antibodies targeting the receptor binding domain of the Spike protein (IC50 = 1/965) approximately 40 days after the booster vaccination. In 2 of 2 experiments, CORVax combined with IL-12 significantly (P<0.0001) increased the sVNT titers at 2 months, but this benefit was lost by 3 months.

Conclusions Early preclinical data shows that EP of CORVax can induce IgG responses to CoV2 Spike and the receptor binding domain (RBD) as well as apparent viral neutralizing activity. The addition of IL-12, at least transiently, increased sVNT titer. We plan to investigate alternate vaccine boosting strategies while extending these studies into aged animals and initiate a clinical trial in the near future.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0480

IMPACT OF COVID-19 ON CANCER PATIENTS RECEIVING IMMUNE CHECKPOINT INHIBITORS

1Kevin Tyler*, 2Al-Tram Bui, 3Anita Gobdie-Hurder, 3Isaac Klein, 2Michael Manos, 3Leyre Zubiri, 3Kerry Reynolds, 4Shilpa Grover, 5Gerald Weinhouse, 6Patrick Ott, 4Nicole LeBoeuf, 7Osama Rahma, 3Harvard Medical School, Somerville, MA, USA; 8Dana-Farber Cancer Institute, Boston, MA, USA; 9Massachusetts General Hospital, Boston, MA, USA; 10Brigham and Women’s Hospital, Boston, MA, USA

Background There are conflicting data regarding the vulnerability of cancer patients receiving immune checkpoint inhibitors (ICIs) to COVID-19 infection. 1–3 In addition, immune-related adverse events (irAEs) driven in part by cytokine dysregulation could parallel the cytokine storm implicated in COVID-19. We sought to evaluate the impact of COVID-19 infection on irAEs and mortality in cancer patients receiving ICIs.

Methods We performed a retrospective matched cohort study of 25 patients receiving ICIs within one year of a confirmed COVID-19 diagnosis between March 20, 2020 and June 3, 2020 at the Dana-Farber Cancer Institute/Mass General Brigham network. Cases were matched 1:1 with controls without ICI use based on age, sex, and use of non-ICI anti-cancer treatment.