Background CD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4 +CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5

Methods Our lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice. Results Specifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors. Conclusions Our findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.

Ethics Approval The human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107

REFERENCES

550 AN AXL-TARGETING MONOCLONAL ANTIBODY THAT INHIBITS AXL ACTIVITY AND POTENTLY STIMULATES THE INNATE IMMUNE RESPONSE

Diego Alvarado*, Laura Vitale, Mike Murphy, Thomas O’Neill, Edward Natoli, Jay Lillquist, Linda Crew, Anna Wasuk, Jeffrey Weidlick, Crystal Sisson, Jennifer Widger, Laura Mills-Chen, Andrea Cocker, Colleen Patterson, James Boyer, Eric Forsberg, April Baronas, Taylor Mathieu, Amelia Fields, Russell Hammond, Li-Zhen He, Joel Goldstein, Lawrence Thomas, Henry March, Tibor Keler. Celldex Therapeutics, New Haven, CT, USA

Background Axl is a member of the TAM (Tyro3/Axl/MerTK) family of receptor tyrosine kinases and a negative regulator of innate immunity. Activation of Axl through its ligand Gas6 leads to suppression of myeloid cell activity, while its activation in tumor cells drives tumor growth, metastasis, and is associated with acquired resistance to targeted therapies, radiotherapy and chemotherapy. Methods Purified monoclonal antibodies and variants thereof were tested in human cancer lines and primary human myeloid cells for effects on Axl signaling and immune activation, respectively. Results We describe a humanized IgG1 Axl-targeting monoclonal antibody (mAb), CDX-0168, that binds to the ligand-binding domain of Axl with sub-nanomolar affinity and potently inhibits Gas6 binding. In tumor cells, CDX-0168 inhibits Gas6-dependent Axl phosphorylation and signaling and elicits tumor cell killing via ADCC in vitro and in vivo. In primary human immune cells, CDX-0168 treatment induces potent release of pro-inflammatory cytokines and chemokines from dendritic cells, monocytes and macrophages through an Fc receptor-dependent mechanism and enhanced T cell activation in mixed lymphocyte reactions. Axl inhibition may further enhance antitumor activity associated with PD-(L)1 blockade. To this end, we generated a tetravalent bispecific Axl x PD-L1 antibody combining CDX-0168 with a potent anti-PD-L1 mAb (9H9) using an IgG-scFv format. The bispecific antibody elicits greater cytokine release and T cell activation in vitro than the combination of the parental antibodies, while maintaining robust Axl and PD-L1 blockade. Conclusions Additional studies investigating simultaneous blockade of the Axl and PD-L1 pathways with other agents may further exploit the potential for this novel anti-cancer therapeutic approach.

552 SUMOYLATION INHIBITOR TAK-981 ACTIVATES NK CELLS AND MACROPHAGES VIA TYPE I INTERFERON SIGNALING AND SHOWS SYNERGISTIC ACTIVITY IN COMBINATION WITH RITUXIMAB AND DARATUMUMAB IN PRECLINICAL MODELS

Akito Nakamura, Keli Song, Stephen Grossman, Kristina Xega, Yuhong Zhang, Allison Berger*, Allison Berger, Gary Shapiro, Dennis Huzar. Takeda Pharmaceuticals, Cambridge, MA, USA

Background TAK-981 is a first-in-class small molecule inhibitor of the SUMO activating enzyme in Phase 1 clinical trials. SUMOylation has previously been implicated in the