ONM-400, A NOVEL APPROACH FOR INTERLEUKIN-2 REGRESSION BY HETIL-15 MONOTHERAPY IN SOLID Cancers

Background Interleukin-2 (IL-2) is a potent immunotherapy for treatment of metastatic melanoma and renal cell cancers. However, the clinical application has been hindered by immunosuppressive stimulation and unfavorable pharmacological properties that can induce life-threatening toxicities.1 Although strategies including ‘no-alpha’ muteins have been developed to provide target specificity at the molecular level,2 little has been done to improve tumor specificity and accumulation at tissue level. We developed ONM-400, a novel IL-2 encapsulating pH-activated nanoparticle that targets metabolic acidosis of cancer to improve the therapeutic index of IL-2 therapy. During circulation, IL-2 activity is sequestered within the nanoparticles. Upon entering the tumor microenvironment, IL-2 release is precisely and instantly triggered by acidic tumor pH, resulting in the selective deposition of active IL-2 at the site of disease.

Methods A tumor-agnostic pH-activated nanoparticle with pH responsiveness similar to ONM-100, a cancer imaging agent currently in a Phase 2 clinical trial,3 has been developed for cytokine delivery. IL-2 was encapsulated within the nanoparticle using a proprietary method to produce ONM-400 and the physical properties were characterized. Activity of IL-2 in ONM-400 was evaluated using a bioluminescent cell-based assay for both its encapsulated (inactive) state and activated format. Tumor accumulation and biodistribution following intravenous injection (IV) of ONM-400 were evaluated in mice bearing head and neck tumors using fluorescent imaging. In vivo antitumor efficacy of ONM-400 after IV injection was studied in MC38 colon cancer-bearing mice and compared with unencapsulated IL-2 at the same dose.

Results Quantitative analysis shows high encapsulation efficiency and drug loading density of IL-2 in ONM-400. At neutral pH, IL-2 bioactivity is effectively sequestered in ONM-400 through encapsulation which avoids IL-2 toxicity in normal tissue. Upon acid-triggered release, IL-2 bioactivity is rescued without compromise compared to unencapsulated IL-2 control. Significantly higher tumor accumulation and lower renal elimination were observed with ONM-400 in biodistribution studies as compared to free IL-2 control suggesting an alteration of pharmacokinetics of IL-2 after encapsulation. ONM-400 induced strong antitumor efficacy as a monotherapy in MC38 colon cancer-bearing mice (figure 1). After ONM-400 treatment 60% of the animals showed complete tumor regression and remained tumor free 60 days. Following a secondary MC38 challenge, 5/6 animals resisted tumor growth.

Conclusions Tumor acidosis-driven accumulation and activation of ONM-400 provide a high local concentration of IL-2 within tumors resulting in strong antitumor response as a monotherapy. Tumor metabolic targeting pH-activatable nanoparticles provides a novel strategy to deliver immunomodulators for cancer treatment.

Ethics Approval All animal experiments were reviewed and approved, and performed in accordance with, by Pennsylvania State College of Medicine Institutional Animal Care and Use Committee under Animal Protocol Number: 47682.

REFERENCES

575 REPRESSION BY HETIL-15 MONOTHERAPY IN DIFFERENT MOUSE BREAST CANCER MODELS CORRELATES WITH INTRATUMORAL INFILTRATION OF A NOVEL POPULATION OF DENDRITIC CELLS

Sevasti Karaliota, Dimitris Stellas, Vasiliki Stravokefalou, Bethany Nagy, Cristina Bergamaschi, Barbara Felber, George Pavlakis* National Cancer Institute at Frederick, Frederick, MD, USA

Background IL-15 is a cytokine which stimulates the proliferation and cytokine function of CD8+ T and NK cells. We have produced and applied the native heterodimeric IL-15 (hetIL-15) on several preclinical models, which have supported the anti-tumor activity of hetIL-15. Based on these results, hetIL-15 has advanced to clinical trials. The objectives of this study were to explore how hetIL-15 shapes the tumor microenvironment and to characterize the interactions between tumor-infiltrating lymphocyte and myeloid cells.

Methods We studied the efficacy of locoregional administration of heterodimeric IL-15 (hetIL-15) in two different orthotopic triple-negative breast cancer (TNBC) mouse models, syngeneic for C57BL/6 and Balb/c, respectively. The effects of hetIL-15 on immune cells were analyzed by flow cytometry, immunohistochemistry (IHC) and gene expression profiling. The profile of the novel infiltrated dendritic cell populations was further explored by bulk and single cell RNAseq.

Results HetIL-15 resulted in tumor eradication in 40% of treated mice and reduction of metastasis. Subsequent challenges with the same cell line failed to generate tumor.
regrowth, suggesting the development of immunological mem-
ory in hetIL-15 treated mice. hetIL-15 promoted tumor accu-
mulation of proliferating and cytotoxic CD8+ T and NK
cells. Additionally, peritumoral hetIL-15 administration resulted in
an increased tumor infiltration of both conventional type 1
dendritic cells (cDC1s) and of a novel DC population found
only in the hetIL-15 treated animals. Phenotypic profile analy-
sis confirmed the expression of several cDC1 specific markers,
including CD103 and IRF8 on this DC population. Transcriptom-
tics and flow analysis of intratumoral dendritic cells indicate
that the new hetIL-15 induced cells reside preferentially in
the tumors and are distinct from cDC1 and cDC2 populations.
Both cDC1s and the novel DC population were inversely
related to the tumor size.

Conclusions Locoregional administration of hetIL-15 results in
complete eradication of EO771 and significant reduction of
4T1 primary breast cancer tumors, prolonged survival and
long-lasting specific anti-tumor immunity. hetIL-15 increases
the tumor infiltration of activated T and NK cells and intensi-
fies the tumor infiltration of conventional type 1 dendritic
cells (cDC1) and a new population of dendritic cells. We pro-
pose that the anti-cancer activity of hetIL-15 in primary
EO771 tumors is orchestrated by the interplay of NK, CD8+
T cells, cDC1 and a novel subset of DCs with a distinct
phenotypic profile. These findings suggest a role for hetIL-15
in the treatment of breast cancer.

Ethics Approval The study was approved by the National Can-
cer Institute-Frederick Animal Care and Use Committee,
approval number 19-324 and was conducted in accordance
with the ACUC guidelines and the NIH Guide for the Care
and Use of Laboratory Animals.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0575

576 NL-201, A DE NOVO IL-2 AND IL-15 AGONIST, DEMONSTRATES ENHANCED IN VIVO ANTITUMOR ACTIVITY IN COMBINATION WITH MULTIPLE CANCER IMMUNOTHERAPIES

Carl Walkey*, Ryan Swanson, Umut Ulge, Daniel Adriano Silva Manzano, Jonathan Drachman. NeoLeukin Therapeutics, Seattle, WA, USA

Background NL-201 is a de novo IL-2 and IL-15 receptor agonist designed with enhanced affinity for IL-2Rβγ and no binding interface for IL-2Rα (CD25). Previously, we reported that NL-201 stimulates selective proliferation of CD8+ effec-
tor T cells and NK cells, leading to increased CD8+ Treg and
NK:Treg ratios in the tumor microenvironment. As a result,
NL-201 treatment led to robust single-agent antitumor activity
in syngeneic murine tumor models at well-tolerated doses.

Methods Here, we evaluated the antitumor activity of NL-201
in combination with established and exploratory cancer immu-
notherapies, including tumor-targeting monoclonal antibodies
and immune checkpoint inhibitors (CPIs). Specifically, we eval-
uated NL-201 in combination with an anti-gp75 antibody
(TA99) in a murine melanoma model, or anti-PD-1 and anti-
PD-L1 antibodies in a CPI-resistant murine colon cancer
model.

Results NL-201 synergizes with TA99, anti-PD-1, and anti-PD-
L1 to inhibit tumor growth more effectively than either agent
alone. The synergy of NL-201 with TA99 may result from
enhanced NK-mediated antibody-dependent cellular cytotoxic-
ity (ADCC), while the synergy with CPIs may result from
CD8+ T cell stimulation, which can turn 'cold' tumor micro-
environments 'hot'.

Conclusions The broad activity of NL-201 across diverse
tumor models and its potential to be combined with a variety
of established and exploratory cancer immunotherapies to
achieve synergistic antitumor activity highlights the opportu-
nity for NL-201 to become a critical component of future
immunotherapy regimens.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0576

577 ENGINEERED NON-PATHOGENIC SYNTHETIC BIOTIC PRODUCING L-ARGININE SYNERGIZE WITH PD-1-BASED CANCER IMMUNOTHERAPY

1Fernando Canale, 1Camilla Basso, 1Ning Li, 2Anna Sokolovska, 1Michela Perotti, 1Michael James, 1Wenjie Jin, 1Jean-Philippe Theurillat, 1Daniel Lenthenal, 1Kip West, 2Jose Lora, 1Federica Sallusto, 1Roger Geiger*. 1Institute for Research in Biomedicine, Bellinzona, Switzerland; 2Synlogic Inc., Boston, MA, USA; 3Institute for Oncology Research, Bellinzona, Switzerland

Background The availability of L-arginine in tumors is a key
determinant of an efficient anti-tumor T cell response. Conse-
quently, the elevation of typically low L-arginine levels within
the tumor may greatly potentiate the anti-tumor responses of
immune check point inhibitors, such as PD-L1 blocking antibi-
odies. However, currently no means are available to locally
increase intra-tumoral L-arginine levels.

Methods We used a synthetic biology approach to develop an
engineered probiotic Escherichia coli Nissle 1917 strain that
colonizes tumors and continuously converts ammonia, a meta-
bolic waste product that accumulates in tumors, into L-
arginine.

Results Colonization of tumors with these bacteria elevated
intra-tumoral L-arginine concentrations, increased the amount
of tumor-infiltrating T cells, and had striking synergistic effects
with PD-L1 blocking antibodies in the clearance of tumors.
The anti-tumor effect of the living therapeutic was mediated
by L-arginine and was dependent on T cells.

Conclusions These results show that engineered microbial
therapies enable metabolic modulation of the tumor microen-
environment leading to enhanced efficacy of immunotherapies.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0577

578 TUMOR SELECTIVE IMMUNE RESPONSES OF STA551, A NOVEL ANTI-CD137 AGONIST ANTIBODY ACTIVATED BY EXTRACELLULAR ATP

Yoshinori Naita*, Mika Kamata-Sakurai. Chugai Pharmaceutical Co., Ltd., Kamakura, Japan

Background Agonistic antibodies targeting CD137 in clinic
have failed due to severe hepatotoxicity, leading to the develop-
ment of bispecific approaches that must rely on high
tumor-associated antigen expression to crosslink CD137. Here
we report on STA551, a novel anti-CD137 agonist antibody
which binds to CD137 only in the presence of ATP. Extracel-
lular ATP concentration is well-known to be elevated in tumor
tissue while remaining tightly regulated in non-tumor tissue,
suggesting that STA551 can activate immune cells only in
tumor tissue and not elsewhere. Thus, STA551 has great
potential to overcome the limitations of conventional CD137-
targeted antibodies.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0578