patients that do not respond well to treatment with immune checkpoint inhibitors. Myxoma virus (MYXV) is a member of the Pox family of double stranded DNA viruses. The natural host of MYXV is a subset of rabbits and hares, but MYXV is able to infect cancer cell lines of humans and other species. The genome of MYXV is relatively large and is amenable to engineering for expression of transgenic proteins making it an excellent oncolytic virus for introduction of immunomodulatory proteins.

**Methods**
The current work describes the in vitro oncolytic activity and transgene production capability in human cancer cell lines, and in vivo activity of armed myxoma viruses in xenograft human cancer models.

**Results**
Armed Myxoma viruses demonstrate transgene production and oncolytic activity in multiple human cancer cell lines in vitro and in vivo.

**Conclusions**
Armed Myxoma viruses present a novel oncolytic viral therapy with ability to modulate immune responses in human cancer models.

**Ethics Approval**
This study was approved by OncoMyx Therapeutics and the TD2 IACUC.

**Abstracts**

597 **IN SITU VACCINATION WITH ONCOLYTIC VESICULAR STOMATITIS VIRUS IMPROVES ANTI-TUMOR IMMUNE RESPONSE AND OUTCOME IN BLADDER CANCER**

Coby Rangsitratkul, Christine Lawson, Lee-Hwa Tai *. Universite de Sherbrooke, Sherbrooke, Canada

**Background**
The majority of nonmuscle invasive bladder cancer (NMIBC) cases progress towards muscle invasive disease. Transurethral resection followed by chemotherapy and/or BCG immunotherapy can stall progression in the minority of NMIBC cases. Cystectomy prior to muscle invasion provides the best option for survival. However, bladder removal significantly affects morbidity and quality of life. There are no effective treatment options for patients with chemo/BCG-resistant and late stage disease. Compared to other solid cancer types, the urinary bladder is an ideal organ to evaluate oncolytic virotherapies due to the urgent medical need for alternative bladder-sparing therapies and its established immunosensitivity to BCG therapy. The current study will determine whether a novel oncolytic Vesicular Stomatitis Virus (VSVd51) containing human immune transgenes can treat NMIBC.

**Methods**
A novel recombinant OV containing a human immune transgene was rescued on the VSVd51 backbone. Features of immunogenic cell death (ICD) on mouse and human bladder cancer cell lines were measured by microscopy, flow cytometry, immunoblot, lumimetry, qRT-PCR and ELISA following infection by recombinant VSVd51. The mediating role of immune effector cells was evaluated through pharmacologic in vivo depletion, while combination injection of recombinant VSVd51 following BCG failure was performed in the C57Bl/6-MB49 model. Measurements of ICD was additionally carried out in human BC spheroids and bladder cancer patient tissue following recombinant VSVd51 infection ex vivo.

**Results**
Recombinant VSVd51 liberated danger signals (calreticulin, HMGB1, ATP) and immunogenic cytokines/chemokines were detected from infected mouse and human BC cell lines. Intravesical instillation of recombinant VSVd51 promoted enhanced activation of systemic and bladder infiltrating natural killer (NK) and cytotoxic CD8+ T cells. The increased functionality of NK and CD8+ T cells was associated with improved survival as determined through depletion studies. Moreover, improved survival and reduced bladder tumor volume was observed in recombinant VSVd51 treated mice who failed BCG therapy. In parallel, VSVd51-induced inflammation of the tumor microenvironment was recapitulated in human BC cell lines, spheroids and patient tissue exposed to recombinant VSVd51 infection.

**Conclusions**
These translational results suggest that a recombinant VSVd51 is a promising immunotherapy that could provide a bladder-sparing therapeutic benefit in individuals diagnosed with NMIBC each year.

**Ethics Approval**
The study was approved by the CIUSSS de l’Estrie CHUS Ethics Board, approval number 2018-2465.

598 **REVERSAL OF EPIGENETIC SILENCING OF CGAS AND STING IN MELANOMA ENHANCES THE ACTIVITY OF TUMOR INFILTRATING LYMPHOCYTES**

1Rana Falahat*, 1James Mulé, 1Anders Berglund, 1Patricio Perez-Villarroel, 1Ryan Putney, 1Shari Pilon-Thomas, 1Glenn Barber. 1Moffitt Cancer Center, Tampa, FL, USA; 1University of Miami Miller School of Med, Miami, FL, USA

**Background**
It is becoming more evident that STING activity in tumor cells can have a functional role in mediating antitumor immune responses. We have recently shown that activation of STING signaling in human melanoma cell lines enhances their antigenicity and susceptibility to lysis by human melanoma tumor infiltrating lymphocytes (TIL) through the augmentation of MHC class I molecules. However, the frequent impairment of this pathway through loss of cGAS and/or STING expression in melanoma cell lines limits their antigen presentation and subsequently their sensitivity to cytotoxic T cell mediated killing. In this study, we asked if this suppression is, in part, epigenetically regulated and if it is indeed a driver of melanoma resistance to T cell-based immunotherapies.

**Methods**
To determine the role of DNA methylation in melanoma STING and cGAS silencing, we performed genome-wide DNA methylation profiling across a panel of 16 human melanoma cell lines. We subjected melanoma cell lines that indicated STING and/or cGAS promoter hypermethylation to treatment with 5-aza-2’-deoxycytidine (5AZADC) and evaluated their protein expression by immunoblot. We next assessed phosphorylation of IRF3 and induction of IFN-β and CXCL10 in 5AZADC-treated melanoma cells following their stimulation with dsDNA or 2’-cGAMP. We also co-cultured 5AZADC-pretreated melanoma cell lines with their HLA-matched human melanoma TIL in the presence or absence of dsDNA or 2’-cGAMP and assessed TIL production of IFN-γ.

**Results**
Using whole genome methylation profiling, we identified a distinct correlation between promoter hypermethylation and loss of STING and cGAS expression in human melanoma cell lines. Reconstitution of STING and cGAS expression through DNA demethylation reinstated functional STING signaling in at least half of the examined cell lines as indicated by STING-dependent phosphorylation of IRF3, induction of CXCL10 (~300 pg/ml, P < 0.0001) and IFN-β (~900 pg/ml, P < 0.0001) and upregulation of MHC class I. We also observed up to a 8-fold increase in TIL production of IFN-γ in co-culture studies using 5AZADC-pretreated melanoma cells.