substantially reduced and no cytotoxicity was observed. To further investigate the underlying mechanism, we analyzed tumor infiltrating lymphocytes (TIL) and as expected, we observed the increase in the number of CD8+ T cells in TIL, compared to control group. Interestingly, our tumor re-challenge result demonstrates that TMEkine (CD20-IL-12) protected animals from tumor recurrence implying that immunologic memory response was generated upon our TMEkine (CD20-IL-12) treatment.

Conclusions Altogether, our data suggest that TMEkine (CD20-IL-12) as an efficacious tumor targeting cytokine opening up a new avenue for the treatment of B-cell lymphoma.

Background Epithelial cell adhesion molecule (EpCAM) is highly expressed in many solid tumors. However, therapeutics targeting EpCAM have had limited clinical utility or failed in clinical development likely due to the expression of EpCAM in normal tissues. For example, clinical testing of solitomab, an EpCAM-targeting T cell engager, resulted in severe dose-limiting toxicities, including elevated liver transaminases, hyperbilirubinemia, and diarrhea. Designing an EpCAM-targeting T cell engager that is only active in the tumor would expand its therapeutic window and improve its safety profile.

Methods Using a T cell engager prodrug platform named ProTriTAC that couples therapeutic half-life extension with functional masking, we have engineered HPN601, a protease-activated EpCAM-targeting T cell engager. HPN601 is a single polypeptide with three binding domains: anti-albumin for half-life extension, anti-CD3e for T cell engagement, and anti-EpCAM for tumor cell engagement. The anti-albumin domain keeps the molecule inert outside the tumor microenvironment. Activation by tumor-associated proteases removes the anti-albumin domain along the masking moiety to reveal a potently active drug inside the tumor. This active drug has minimal activity outside of tumor because, without an albumin binding domain, it is rapidly cleared in circulation.

Results A humanized rodent tumor model was used to simultaneously measure anti-tumor efficacy and clinically relevant toxicity endpoints. In this model, a surrogate molecule of HPN601 was safely administered at a dose ten-fold higher than the minimal efficacious dose required for durable tumor regression. Higher doses produced toxicities including elevated ALT/AST and bilirubin, body weight loss, and evidence of tissue damage by histopathology. In contrast, a constitutively active EpCAM-targeting T cell engager could only be dosed safely up to its minimal efficacious dose. The improved safety profile of HPN601 is further supported by a toxicokinetic study in non-human primates: compared to a constitutively active EpCAM-targeting T cell engager, HPN601 had significantly attenuated cytokine production, including IFN-γ, IL-2, IL-6, and IL-10.

Conclusions HPN601 is a conditionally active EpCAM-targeting T cell engager with a ten-fold improved therapeutic window compared to a constitutively active EpCAM-targeting T cell engager. An EpCAM-specific T cell engager with an improved safety profile could address unmet needs in many solid tumors and demonstrate the feasibility of using conditionally active T cell engagers to target more solid tumor antigens.

Ethics Approval The study was reviewed and approved by Harpoon’s Institutional Animal Care and Use Committee.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0631
and NK cells in a dose-dependent manner, and reduces growth of established tumors in vivo. This preclinical data, demonstrates conditional dual stimulation of 4-1BB and OX40 and supports further development of APVO603, a promising immuno-oncology therapeutic with potential for benefit in solid tumors.

Ethics Approval Treatment of study animals was in accordance with conditions specified in the Guide for the Care and Use of Laboratory Animals, and the study protocol (ACUP 20) was approved by the Institutional Animal Care and Use Committee (IACUC).

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0633

634 PRODUCTION AND TESTING OF A NOVEL BISPECIFIC NANOBODY CONSTRUCT TARGETING NK CELLS AND EGFR EXPRESSING MALIGNANCIES

Background The ability to kill tumor cells with an acceptable toxicity profile, makes Natural Killer (NK) cells promising therapeutic with potential for benefit in solid tumors. The ability to kill tumor cells with an acceptable toxicity profile, makes Natural Killer (NK) cells promising therapeutic with potential for benefit in solid tumors. The ability to kill tumor cells with an acceptable toxicity profile, makes Natural Killer (NK) cells promising therapeutic with potential for benefit in solid tumors. The ability to kill tumor cells with an acceptable toxicity profile, makes Natural Killer (NK) cells promising therapeutic with potential for benefit in solid tumors.

Methods In this study, we show a novel bispecific nanobody-based construct (biVHH) targeting both CD16A (low-affinity Fc receptor: FcγRIIIA) on NK cells and EGFR on tumors of epithelial origins.

Results Higher levels of NK cell activity and subsequent tumor cell lysis were found in vitro in the presence of the biVHH and were dependent on the expression of both CD16A and EGFR while they were independent of the KRAS mutational status of the tumor. Increased NK cell activity was found in NK cells derived from colorectal cancer (CRC) patients when co-cultured with the biVHH and EGFR expressing tumor cells. Finally, higher levels of cytotoxicity were found against patient-derived metastatic CRC cells in the presence of the biVHH and autologous peripheral blood mononuclear cells or allogeneic NK cells.

Conclusions Based on our results, the bispecific CD16A and EGFR targeting VHH construct could be a useful tool in combination with various NK cell-based therapies.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0634

635 A NOVEL SITE-DIRECTED CHEMICAL CONJUGATION TECHNOLOGY CONIFRS ANTITUMOR ACTIVITY VIA NATIVE FC RECEPTOR TO PLASMA IMMUNOGLOBULIN BY ATTACHING TUMOR BINDERS

Background We describe KPMW101, which was created by chemical conjugation of a CD38-specific binder to clinical grade intravenous immunoglobulin (IvIg) pooled from healthy donors. Kleo’s MATE™ technology enables efficient site-directed chemical conjugation to ‘off-the-shelf’ IvIg and allows the development of antitumor agents with rapidly introduced target specificity. Our platform allows for chemical engineering of existing IvIg in a cost-efficient manner. This technology relies on synthetic compounds that consists of antibody binder with react-and-release mechanism.

Methods Design of synthetic chemical reagents included antibody binding group capable of covalent bond formation with specific lysine, CD38 binding moiety proven to work in our clinical candidate KP1237, and tunable non-cleavable linker.

Results Synthetic chemical reagents with multiple linker types have been conjugated to IvIg and evaluated in biochemical assays. KPMW101 showed the highest conjugation efficiency. Binding affinity of KPMW101 to CD38 was 27nM. ELISA results show KPMW101 binds to CD16a and FcRn, indicating that conjugation does not interfere with FcR binding. In vitro ADCC results demonstrate that KPMW101 elicited CD38+ target cell killing with an EC50 of 0.91–2.09nM.

Conclusions KPMW101 is created by chemical conjugation of CD38-specific binder to IvIg using our proprietary MATE™ technology, maintaining native binding to FcRs via the Fc domain. This ensures the stability of the molecule and retains immune-mediated mechanisms of action. KPMW101 induces IvIg to adopt Fc effector mechanisms like ADCC and ADCP.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0635

Immunotherapy toxicities

637 IMMUNE-RELATED ADVERSE EVENTS (IAE) MAY INDICATE A FAVORABLE PROGNOSIS IN METASTATIC RENAL CELL CARCINOMA (MRC) PATIENTS TREATED WITH IMMUNE CHECKPOINT INHIBITORS (ICI)

1Dylan Martin*, 1Sean Evans, 2Subir Goyal, 1Yuan Liu, 1Anders Olsen, 1Benjamin Magod, 1Jacqueline Brown, 1Lauren Yantom, 1Greta Russler, 1Sarah Caulfield, 1Jamie Goldman, 1Bassel Nazha, 2Wayne Harris, 1ViraJ Master, 1Omer Kucuk, 1Bradley Carthon, 1Mehmet Bilen. Emory University School of Medicine, Atlanta, GA, USA; 2Winship Cancer Institute of Emory University, Atlanta, GA, USA.

Background Immune checkpoint inhibitors (ICI) have become an increasingly utilized treatment in metastatic renal