patients were excluded given lack of records or because they received less than 2 cycles of treatment.

Results 176 patients were included in the final analysis. ICIs were discontinued in 25/176 (14.2%) patients secondary to AE. 24/176 (13.6%) patients had grade III or higher AEs reported. 10/95 (10.5%) patients who received pembrolizumab developed grade III/IV AEs (8 pneumonitis, 2 nephritis). 5/45 (11.1%) patients treated with nivolumab developed grade III/IV AEs (2 pneumonitis, 1 new-onset DKA, 1 nephritis, 1 myositis). 8/19 (42.1%) receiving durvalumab had grade III or higher AEs (6 pneumonitis, 1 sepsis, 1 colitis). Lastly, 1/17 (5.8%) in atezolizumab group developed grade III/IV AE (colitis). 96/176 (54.5%) patients had one or more ER visit and 91/176 (51.7%) were admitted to the hospital for various reasons one or more times.

Conclusions ICIs have a relatively safe drug profile. 86.4% of our studied population did not develop any grade III or higher AEs. The main reason for ICI discontinuation was disease progression rather than AE. The most common grade III/IV AE was pneumonitis. Durvalumab had the highest incidence of AE, pneumonitis, which is likely related to radiation use prior to immunotherapy.

Acknowledgements N/A

REFERENCES


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0654

655 CONCORDANCE BETWEEN HEALTHCARE PROVIDERS AND EXPERT CONSENSUS RECOMMENDATIONS IN THE MANAGEMENT, MONITORING, AND MITIGATION OF ADVERSE EVENTS ASSOCIATED WITH CAR T-CELL THERAPY: AN UPDATED ANALYSIS

1. Matthew Frigault*, 2Megan Cartwright, 3Krista Marcollo, 2Timothy Quill, 3Daniel DeAngelo, 4Ilene Galinsky, 5Shila Paul, 5Dana Park, 1Massachusetts General Hospital, Somerville, MA, USA; 2Clinical Care Options, LLC, Reston, VA, USA; 3Dana-Farber Cancer Institute, Boston, MA, USA; 4MD Anderson Cancer Center, Houston, TX, USA; 5Memorial Sloan Kettering Cancer Center, New York, NY, USA

Background Chimeric antigen receptor (CAR) T-cell therapy has been a major innovative breakthrough for hematologic malignancies. These therapies are associated with unique and potentially serious toxicities, including cytokine release syndrome (CRS) and immune effector cell-associated toxicitiy (ICANS), that require vigilance, prompt recognition, and appropriate management to ensure patient safety and optimal therapeutic benefit. We developed an online tool to give healthcare providers (HCPs) case-specific, evidence-based expert guidance on the management of adverse events (AEs) from CAR T-cell therapy. Here, we report an updated analysis comparing CAR T-cell toxicity management among HCPs using the tool vs the expert consensus recommendations.

Methods In March 2019, 5 experts provided consensus guidance for the screening, prophylaxis, monitoring, and management of CRS and ICANS in patients considering or receiving CAR T-cell therapy. This information was used to build the interactive online tool. To use this tool, HCPs enter the AE of interest, the severity of the event, and their planned management approach. The HCPs were then shown the expert recommendation for that specific scenario. After viewing the expert recommendation, HCPs were asked if it affected their intended approach.

Results Between May 2019 and July 2020, 282 HCPs entered 431 unique case scenarios into the tool. Of the entered cases, 56% were HCPs seeking expert recommendations on pretreatment screening and prophylaxis/monitoring strategies for patients not yet experiencing an AE. Of 188 cases entered for patients who received CAR T-cell therapy and experienced an AE, 67% were CRS and 33% were neurotoxicity/ICANS. Overall the planned toxicity management strategy of HCPs matched the expert recommendations in 57% of cases, with a similar rate of concordance for both CRS and ICANS events. There was no significant difference in concordance rates with expert recommendations by toxicity severity (figure 1) nor among HCPs who indicated they practiced at authorized centers vs those who did not (P = 0.7184). Among HCPs who answered the optional survey on the impact of the tool on their management plan, 30% indicated that the expert recommendations changed their approach.

Conclusions These data suggest that many HCPs are challenged to optimally manage CAR T-cell therapy toxicities in concordance with expert recommendations. Use of an online tool providing easy access to evidence-based consensus expert recommendations may improve care and safety in patients treated with CAR T-cell therapy. A detailed analysis of the tool including planned management vs expert recommendations for each toxicity and grade will be presented.

REFERENCES

Background Optimal diagnostic algorithm to differentiate checkpoint inhibitor pneumonitis (CIP) from mimics is uncertain; patients with respiratory comorbidities often receive prolonged corticosteroids until diagnostic clarification. Drawbacks to empiric use of corticosteroids include decreased immunotherapy (IO) efficacy and increased infectious risk. This retrospective study systematically collected data on patients treated for lung cancer who were suspected to have severe CIP.

Methods This single-center retrospective cohort study collected data on all lung cancer patients who received >1 dose of an immune checkpoint inhibitor between 6/1/18 and 2/1/20 (n=210), were subsequently hospitalized and received >1 dose of systemic corticosteroids for any indication (n=97). Data were collected on clinical factors including comorbidities, cancer stage, IO cycles, biomarkers, diagnostic work-up, antibiotics, steroids, progression, and survival. A blinded radiologist reviewed all imaging of suspected CIP cases and categorized their radiographic patterns.

Results In our high-risk cohort of 97 patients, median follow-up was 23 months with progression in 54 patients (56%) at median 11 months and death in 67 patients (69%) at median 14mo. Twelve patients (12%) were suspected to have severe CIP after IO treatment for lung cancer; CIP was confirmed in 5/12 and ruled-out (mimics) in 7/12 after 30 and 3 median IO cycles, respectively. Most suspected patients underwent CXR, CTA chest, blood cultures, and received empiric antibiotics. Common radiographic patterns were ground-glass opacities, organizing pneumonia, hypersensitivity pneumonitis, and acute interstitial pneumonia/acute respiratory distress syndrome (AIP/ARDS) among confirmed cases (4/5) and ground-glass opacities, organizing pneumonias, bronchiolitis, AIP/ARDS among mimics (4/7). The median time to confirm CIP or rule out a mimic was 5±4 days. Median time to onset of symptoms differed substantially for confirmed and mimic cases: 17 months and 1 month, respectively.

Conclusions CIP mimics were more common than confirmed cases in routine clinical practice, particularly among patients hospitalized for respiratory symptoms <1 month after initiating immunotherapy for lung cancers. In these cases, it is reasonable to empirically cover possible CIP with shorter (~1 week) courses of steroids until diagnostic clarity is achieved. CT imaging should be obtained as it is sensitive though not specific for CIP. CIP mimics may contribute to the higher incidence of CIP reported by real-world patient registries than by clinical trials.

Ethics Approval The study was approved by Wake Forest Baptist Medical Center’s Ethics Board, IRB approval number 00044126.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0656