partly due to an increase in CISH gene expression that makes the cells less responsive to cytokine stimulation. The RNA-Seq analysis revealed that NK cell metabolism closely resembles cancer cell metabolism under hypoxic conditions, specifically an increased expression of genes related to glycolysis, amino acid synthesis and central carbon metabolism. This change in metabolism was confirmed using Seahorse assays. We also observed changes in genes related to epigenetic regulation specifically, increases in histone demethylases and decreases in DNA methyltransferases (figure 4).

Conclusions These results indicate that NK cells who enter the solid TME are fundamentally different than those in the bone marrow or the blood stream. Overall, the insights gained from these experiments can help overcome hypoxia induced immune suppression in the tumor microenvironment and improve NK cell-based immunotherapy for solid tumors.

Acknowledgements We thank XCell biosciences for providing us with the AVATAR incubators used for these experiments.

Trial Registration N/A

Ethics Approval N/A

Consent N/A

REFERENCES


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0675

PD-L1 is induced by the periodontal pathogen Porphyromonas gingivalis and can be blocked by small molecule gingipain inhibitors, including Atuzaginstat


Background The periodontal pathogen Porphyromonas gingivalis (Pg) has been linked to esophageal and other cancers through epidemiology studies. Pg’s protease virulence factors known as gingipains have been identified in esophageal cancer tissue and correlate with worse disease prognosis. Anti-PD-1 antibodies have shown some success in esophageal cancer treatment, but further understanding of the induction of PD-L1 in esophageal cells is needed to identify potential treatment modalities. Pg has been shown to induce PD-L1 on the surface of infected cells, suggesting that the presence of Pg in esophageal cancer cells may contribute to PD-L1 expression and immune escape. One of the pathways known to induce PD-L1 is wnt pathway activation resulting in b-catenin translocation to the nucleus. Prior studies have demonstrated that Pg activates the wnt pathway by a non-canonical mechanism, leading to b-catenin nuclear localization.

Methods An immortalized non-transformed esophageal cell line, Het-1A, was used to investigate the level of PD-L1 induction by Pg infection using quantitative immunofluorescence. PD-L1 expression was measured using irreversible gingipain inhibitors against lysine-gingipain (Kgp) and arginine-gingipain (Rgp). Pg-induced PD-L1 expression pathways were investigated by Western blot and qPCR. PD-L1 induction by Pg was characterized in cancer cell lines that have an endogenous level of PD-L1 expression, including tongue squamous cell carcinoma (SCC25) and neuroblastoma (SH-SY5Y). PD-L1 induction by Pg was assessed in a murine derived RAW macrophage cell line that is critical for anti-PD-1 responses.
Results Pg infection increased PD-L1 expression on Het-1A cells within 24 hours of infection and increased PD-L1 mRNA within 4 hours of infection. PD-L1 expression level correlated with cellular bacterial burden on the cells in a dose-dependent manner. PD-L1 expression was decreased by the Kgp inhibitor, atuzaginstat, or an Rgp inhibitor, COR613, and PD-L1 expression was completely blocked when both gingipain inhibitors were used together (figure 1). Pg also induced expression of PD-L1 on the surface of infected SCC-25, SH-SY5Y, and RAW cell lines. Western blot analysis and qPCR revealed that Kgp inhibition, but not Rgp inhibition, was able to inhibit the non-canonical activation of β-catenin and down regulation of classical Wnt pathway effectors at both the mRNA and protein level.

Conclusions In host cells infected with Pg, gingipains mediate the induction of PD-L1 as a mechanism of immune evasion through the non-canonical activation of the Wnt pathway. Further studies to elucidate induction mechanisms are in progress. In esophageal cancer and other cancers infected with Pg, combining gingipain inhibitors with anti-PD-1 therapy may improve treatment outcomes.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0676

EVALUATION OF ANTI-PD1 EFFICACY IN GERM-FREE AND ANTIBIOTIC-TREATED SPF MICE BEARING MC38 TUMORS

Ying Jin, Xue Liang, Frieda Zhang, Guangmao Mu, Wei Zhou, Annie An, Marvin Ouyang, Cai Li, Andy Liaw, Henry Li, Davy Ouyang*.
1Ying Jin, 2Xue Liang, 3Frieda Zhang, 4Guangmao Mu, 5Wei Zhou, 3Annie An, 3Marvin Ouyang, 2Cai Li, 4Andy Liaw, 5Henry Li, 5Davy Ouyang*. 1Crown Bioscience Inc, San Diego, CA, USA; 2Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA; 3Cyagen Biosciences Inc, Taicang, China; 4Crown Bioscience Inc., San Diego, CA, USA; 5Cyagen Biosciences Inc., Taicang, China

Background Increasing evidence has indicated the important role of gut microbes in mediating normal and pathologic immune responses to cancer in both patients and animal models. There is growing effort in modulating microbiota composition to improve the outcome of cancer immunotherapy. To investigate the immunomodulatory roles of microbiota-based therapeutics preclinically, germ-free (GF) mice are often used because they are free of microorganisms. However, logistic challenges and inherited physiological deficits in GF mice are also generally acknowledged. Alternative approach of depleting gut microbiota in using specific pathogen-free (SPF) mice with broad-spectrum antibiotics has also been adopted. Potential challenges with this approach are possible acquisition of antibiotic-resistant bacteria and potential expansion of fungi. Here we report on the efficacy assessment of anti-PD-1 mAb on MC38 syngeneic tumors in both GF mice and antibiotic-treated SPF mice.

Methods C57BL/6 mice were inoculated subcutaneously with MC38 tumor cells. In the GF study, GF mice (Taconic, provided by Cyagen) were housed in germ-free isolators at a Cyagen facility, and a cohort of SPF mice (Taconic) were used as controls. Both GF and SPF mice were randomized for isotype or anti-PD-1 mAb (mDX400) treatment when the tumors were established (80–120 mm³) and were continuously monitored for tumor growth over time. In the antibiotic treatment study, different antibiotic regimens were administered to SPF mice (Lingchang) in drinking water starting 2 weeks prior to MC38 tumor inoculation and continued throughout the study. Mice were treated with vehicle control or anti-PD-1 mAb (RMP1-14; CrownVivo™).

Results Tumor growth is significantly faster in GF than SPF mice, and mDX400 slow the tumor growth rate in both GF and SPF mice. The tumors achieved complete regressions on 4 out of 10 GF mice as compared to 6 out of 10 SPF mice, yet the difference of mDX400 efficacy in GF vs SPF mice did not reach statistical significance. In antibiotic-treated SPF mice, none of the antibiotic regimens showed significant impact on MC38 tumor growth nor anti-PD-1 efficacy in SPF mice, which was contrary to most reported data. Immune profiling on tumor infiltrating lymphocytes in these mice and microbiota analysis by 16S rRNA gene amplicon sequencing are ongoing and the data will be presented at the meeting.

Conclusions We have observed faster tumor growth in GF mice, however, the efficacy of anti-PD-1 antibody is not impacted by GF condition or treatment with broad-spectrum antibiotics. These results are different from previously published work, indicating high variability in preclinical models. Ongoing analysis with antibiotic-treated mice will provide further insight.

Ethics Approval Animal experiments were conducted in accordance with animal welfare law, approved by local authorities, and in accordance with the ethical guidelines of Crown-Bio (Taicang).

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0677

ADDITION OF A SINGLE BACTERIA FACILITATES ANTITUMOR IMMUNITY AND LONG-TERM SURVIVAL IN COLORECTAL CANCER

1Abigail Overacre-Delgoffie*, 2Anthony Cillo, 3Hannah Bumgarner, 4Ansen Burr, 2Justin Tomerich, 3Amrita Bhattacharjee, 4Tullia Bruno, 5Dario Vignali, 1Timothy Hand. 1University of Pittsburgh, Pittsburgh, USA; 2Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA; 3UPMC Cancer Center, Pittsburgh, PA, USA

Background Colorectal cancer remains one of the most common and deadliest cancers worldwide and effective therapies are lacking. While immunotherapy has revolutionized treatment for many cancers, the overwhelming majority of